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Solitary solutions of the Schr̈odinger-Poisson

equations in one and two dimensions

Gin-yih Tsaur∗

Abstract

The Schrödinger-Poisson equations are a set of nonlinear equations that form the back-bone of many

important physics problems. An interesting problem is the effect of gravity in quantum mechanics. The

density distribution described by the wavefunctionψ produces a gravitational potentialV through the Pois-

son equation, and the potentialV in turn changes the wavefunctionψ itself through the Schrödinger equa-

tion. Such a feedback mechanism provides a nonlinear effectthat leads to solitary solutions. In this paper

1-D and 2-D solitary solutions of the Schrödinger-Poissonequations are computed by both the shooting

method and the boundary-value method. The shooting method is efficient for finding solutions in the short

range, but unstable in the long range. Whereas, long-range solutions can be computed accurately by the

boundary-value method with the short-range initial guess provided by the shooting method. Hence for this

problem these two methods play complementary roles in the numerical computation.

1 Introduction

The Schrödinger-Poisson equations can be written as

i
∂
∂t

ψi = −∇2ψi +Vψi, ∇2V = ∑
i

|ψi|2 (1.1)

for gravitational systems, or

i
∂
∂t

ψi = −∇2ψi + qiVψi, −∇2V = ∑
i

qi|ψi|2 (1.2)

for electrical systems, whereqi represents the charge of theith species of particle. The first part

in Eqs. (1.1) and (1.2) is the Schrödinger equation, in which the probability amplitudeψi is de-

termined by the potentialV , and the second part is the Poisson equation, in which the potentialV

is induced by the probability densities|ψi|2 of all the particles. Applications of the Schrödinger-

Poisson equations includes modelling self-gravitating systems such as bosonic stars [1–4], and
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modelling the Coulomb interaction between charge carriersin semiconductors [5–9]. In general,

the Schrödinger-Poisson equations can be considered as a quantum version of the Vlasov-Poisson

equations or a statistical version of the Hartree-Fock equations, both of them have a wide range of

applications in physics.

If only a single species of particle is considered, Equations (1.1) and (1.2) can be rescaled to

i
∂
∂t

ψ = −∇2ψ+Vψ, −ε∇2V = |ψ|2, (1.3)

whereε = −1 when the force is attractive andε = +1 when the force is repulsive. Equation (1.3)

has a unique global solution with the initial condition

ψ(xxx,t = 0) = ψ0(xxx), (1.4)

and the boundary condition

lim
|xxx|→∞

ψ = lim
|xxx|→∞

V = 0, (1.5)

if the initial dataψ0(xxx) is anH2(R3) function [10]. These solutions are generally not stationary.

For the repulsive case (ε = +1) with finite energy, the solutions decay asymptotically tozero

ast → ∞ [10–12]. Similarly, for the attractive case (ε = −1) with positive energy, the solutions

expand unboundedly ast →∞ [13,14]. Only for the attractive case with negative energy,stationary

3-D solutions exist [14]. In this case there exists an infinite family of stationary normalizable

spherically-symmetric solutions [15]. The first tens of them have been computed explicitly by the

shooting method [3, 16] or by the boundary-value method [17], and some analytical justifications

for the numerical results can be found in [15, 18]. In this paper the focus is on the attractive case

in 1 and 2 dimensions. We compute the stationary normalizable symmetric solutions in Secs. 2, 3

and study the convergence of the solutions at larger in Sec. 4.

For the attractive case, Eq. (1.3) becomes

i
∂
∂t

ψ = −∇2ψ+Vψ, ∇2V = |ψ|2. (1.6)

The equation is satisfied by the stationary solutionsψ(xxx,t) = e−iωtΨ(xxx), V = V (xxx) or the solitary

solutionsψ(xxx,t) = e−iωtei(vvv·xxx/2−vvv2t/4)Ψ(xxx− vvvt), V = V (xxx− vvvt) with arbitrary velocityvvv, whenΨ
andV satisfy

∇2Ψ = (V −ω)Ψ, ∇2V = Ψ2. (1.7)

Since stationary and solitary solutions are related simplyby a change of reference frame, we shall

not distinguish them in the rest of this paper. In the 1-D and 2-D cases, the equations for symmetric

solutions are respectively

Ψrr = (V −ω)Ψ, Vrr = Ψ2, (1.8-1)
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(rΨr)r = r(V −ω)Ψ, (rVr)r = rΨ2. (1.8-2)

The smoothness of the solutions atr = 0 is required,

Ψr(0) = 0, Vr(0) = 0, (1.9)

and the normalization condition is also required, which is respectively
Z ∞

0
Ψ2dr = 1, (1.10-1)

Z ∞

0
2πrΨ2dr = 1. (1.10-2)

By integrating the the Poisson equations in Eq. (1.8) with respect tor, and substituting inVr(0) =

0, it is seen that Eq. (1.10) is equivalent to the boundary conditions

Vr → 1 as r → ∞, (1.11-1)

rVr →
1
2π

as r → ∞, (1.11-2)

namely

V → r as r → ∞, (1.12-1)

V → lnr
2π

as r → ∞. (1.12-2)

The integration constant in Eq. (1.12) is not important because the solution can be changed toV +c

for any constantc with the eigenvalue changed toω+c. In section 2 we search for the solutions of

Eqs. (1.8), (1.9), (1.10) using the shooting method and in section 3 Eqs. (1.8), (1.9), (1.12) using

the boundary-value method. Because for larger the shooting method becomes extremely sensitive

to the initial value, it can only provide solutions in a limited range. The boundary-value method

is used to verify the solutions and extend them to larger where the shooting method is inherently

unstable.

2 Solutions by the Shooting Method

Let us define a new variableY by

Y ≡V −ω. (2.1)

In terms ofY , Eqs. (1.8) and (1.9) become

Ψrr = Y Ψ, Yrr = Ψ2, (2.2-1)
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(rΨr)r = rY Ψ, (rYr)r = rΨ2, (2.2-2)

and

Ψr(0) = 0, Yr(0) = 0. (2.3)

Since Eqs. (2.2), (2.3), and the normalization condition Eq. (1.10) are invariant under the transfor-

mationΨ → −Ψ, we may assumeΨ(0) > 0. If furthermoreY (0) ≥ 0, then Eqs. (2.2) and (2.3)

imply Ψr > 0,Yr > 0 for all r > 0, andΨ → ∞, Y → ∞ asr → ∞, which violates the normalization

condition. Therefore one must haveY (0) < 0, namelyΨ(0)Y (0) < 0. Hence one hasΨY < 0 near

r = 0 andΨ2 ≥ 0 for all r. This implies from Eqs. (2.2) and (2.3) thatΨr < 0 nearr = 0 and

Yr > 0 for all r > 0. NamelyΨ is decreasing whenr is small andY is increasing for allr. From

Eqs. (1.12) and (2.1),Y increases

from Y (0) < 0 to r−ω as r → ∞ (2.4-1)

for the 1-D case and

from Y (0) < 0 to
lnr
2π

−ω as r → ∞, (2.4-2)

for the 2-D case.

The Schrödinger equations in Eq. (2.2) are equivalent to

Ψrr = Y Ψ, (2.5-1)

(
√

rΨ)rr = [Y −1/(4r2)](
√

rΨ), (2.5-2)

for the 1-D and 2-D cases respectively. Eq. (2.4) implies that Y for the 1-D case orY −1/(4r2)

for the 2-D case are increasing from being negative nearr = 0 to a transition pointr = rM beyond

which they are positive. Therefore Eq. (2.5) implies that the solutionsΨ for the 1-D case or
√

rΨ
for the 2-D case are oscillatory forr < rM and either decay to zero faster than some exponentially

decaying functions or diverge to±∞ faster than some exponentially growing functions forr >

rM. Generally the solutions diverge to±∞. For everyΨ(0), only a discrete set of specialY (0)

makes the solutions decay to zero. The shooting method finds these specialY (0) by successively

narrowing down the range(c1,c2) in which Y (0) = c1 andY (0) = c2 causeΨ to diverge in the

opposite directions. Namely, one causesΨ →+∞ and the other causesΨ →−∞ at larger. By the

continuity condition [15], there exists a value ofY (0) in the interval(c1,c2) for which Ψ or
√

rΨ
decay to zero faster than some exponentially decaying functions, and then the integrals

R ∞
0 Ψ2dr

or
R ∞

0 2πrΨ2dr are finite. These solutions are called the bound-state solutions.

If Ψ(r) andY (r) satisfy Eqs. (2.2) and (2.3),

Ψ̃(r) =
1
λ2 Ψ

( r
λ

)
, Ỹ (r) =

1
λ2Y

( r
λ

)
, (2.6)

also do, whereλ is an arbitrary scaling constant. Therefore one can choose aλ to makeΨ̃(r)

satisfy the normalization condition. As we shall see, the scaling constantλ and the eigenvalueω
can be obtained by fitting the values of the bound-state solutionsY at larger.
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2.1 The 1-dimensional case

BecauseΨ can be rescaled by Eq. (2.6) to satisfy the normalization condition, one may start

the search withΨ(0) = 1. As shown in Fig. 2.1, forY (0) = −0.641684,Ψ has no zeros and

approaches+∞, and forY (0) = −0.641685,Ψ has a single zero and approaches−∞. Therefore

there exists a value ofY (0) in the interval(−0.641685,−0.641684) for whichΨ has no zeros and

decays to zero. By successively narrowing down the interval, the valueY (0) for the ground-state

solution is computed to the 14th digit in Fig. 2.1. Forn = 0,1,2,3,4,5, in Fig. 2.2 one can find a

value ofY (0) for which Ψ hasn zeros and approaches(−1)n∞, and a nearby lower value ofY (0)

for which Ψ hasn + 1 zeros and approaches(−1)n+1∞. Therefore in between these two values

there is aY (0) for which Ψ hasn zeros and decays to zero.

-1.0

0.0

1.0

1512963

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.1: the solutionsΨ of Eqs. (2.2-1) and (2.3) withΨ(0) = 1 andY (0) = (a) -0.641684, (b)

-0.641685, (c) -0.641686897, (d) -0.641686898, (e) -0.64168689718419, (f) -0.64168689718420

The valuesY (0) for thenth bound-state solution are reported to the fifth digit in thefirst column of

Table 1. With these values the solutionΨ decays to zero faster than some exponentially decaying

function, therefore the probability
R ∞

0 Ψ2dr is finite. Let

Z ∞

0
Ψ2dr = λ3, (2.7)

then set

Ψ̃(r) =
1
λ2 Ψ

( r
λ

)
, Ỹ (r) =

1
λ2Y

( r
λ

)
, (2.8)
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Figure 2.2: the solutionsΨ of Eqs. (2.2-1) and (2.3) withΨ(0) = 1

one can easily check that̃Ψ andỸ satisfy Eq. (1.10-1) in addition to Eqs. (2.2-1) and (2.3). Hence

Ỹ (r) → r−ω asr → ∞. (2.9)
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Table 1: Values ofYn(0), An, andBn for the 1-D case

n Yn(0) An Bn

0 -0.64168 1.13286 -1.47076

1 -2.63224 2.29445 -6.95298

2 -4.69842 3.06543 -12.4960

3 -6.77511 3.68106 -18.0465

4 -8.85488 4.20830 -23.5989

5 -10.93589 4.67673 -29.1520

Table 2: Values ofλn, ωn, Ψ̃n(0), andṼn(0) for the 1-D case

n λn = A1/3
n ωn = −BnA−2/3

n Ψ̃n(0) = A−2/3
n Ṽn(0) = [Yn(0)−Bn]A

−2/3
n

0 1.0425 1.3534 0.9202 0.7629

1 1.3189 3.9969 0.5748 2.4837

2 1.4527 5.9217 0.4739 3.6952

3 1.5440 7.5697 0.4195 4.7278

4 1.6145 9.0536 0.3836 5.6565

5 1.6723 10.4241 0.3576 6.5137

FromY (r) = λ2Ỹ (λr), one has

Y (r) → Ar + B asr → ∞, (2.10)

where

A = λ3, B = −λ2ω. (2.11)

SinceA andB can be obtained by fitting the values of the bound-state solutionsY at larger, one

obtains the scaling constantλ and the eigenvalueω. The valuesA andB for then-th bound-state

solution,n = 0,1,2,3,4,5, are reported in the 2nd and 3rd columns of Table 1. From Eq. (2.11)

andΨ(0) = 1, one has

λ = A1/3, (2.12)

ω = − B
λ2 = −BA−2/3, (2.13)

Ψ̃(0) =
1
λ2 Ψ(0) = A−2/3, (2.14)

Ỹ (0) =
1
λ2Y (0) = Y (0)A−2/3. (2.15)
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Moreover, in accordance with Eq. (2.1),Ṽ ≡ Ỹ + ω, one has

Ṽ (0) = Ỹ (0)+ ω

= [Y (0)−B]A−2/3. (2.16)

The valuesλ, ω, Ψ̃(0), Ṽ (0) for the n-th bound-state solution,n = 0,1,2,3,4,5, are reported in

Table 2. They will be used in the initial guess for the boundary-value method in Section 3.

2.2 The 2-dimensional case

Similar to the 1-D case, we start the search withΨ(0) = 1 and estimate the valueY (0) for

the ground-state solution to the 14th digit in Fig. 2.3. The valuesY (0) for the n-th bound-state

solutions,n = 0,1,2,3,4,5, are shown in Fig. 2.4 and reported in the first column of Table 3 to the

fifth digit.

-1.0

0.0

1.0

252015105

(a) (c) (e)

(b) (d) (f)

Figure 2.3: the solutionsΨ of Eqs. (2.2-2) and (2.3) withΨ(0) = 1 and Y (0) = (a) -

0.824107, (b) -0.824108, (c) -0.8241071603, (d) -0.8241071604, (e) -0.82410716034937, (f) -

0.82410716034938

With these values the solution
√

rΨ decays to zero faster than some exponentially decaying

function, therefore the probability
R ∞

0 2πr2Ψ2dr is finite. Let
Z ∞

0
2πrΨ2dr = λ2, (2.17)

then set

Ψ̃(r) =
1
λ2 Ψ

( r
λ

)
, Ỹ (r) =

1
λ2Y

( r
λ

)
, (2.18)

one can easily check that̃Ψ andỸ satisfy Eq. (1.10-2) in addition to Eqs. (2.2-2) and (2.3). Hence

Ỹ (r) → lnr
2π

−ω asr → ∞. (2.19)
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Figure 2.4: the solutionsΨ of Eqs. (2.2-2) and (2.3) withΨ(0) = 1

FromY (r) = λ2Ỹ (λr), one has

Y (r) →C ln r + D asr → ∞, (2.20)

where

C =
λ2

2π
, D = λ2

(
lnλ
2π

−ω
)

. (2.21)

SinceC andD can be obtained by fitting the values of the bound-state solutionsY at larger, one
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Table 3: Values ofYn(0), Cn, andDn for the 2-D case

n Yn(0) Cn Dn

0 -0.82411 1.35273 -1.14255

1 -1.54261 2.40683 -4.03590

2 -2.02545 3.13053 -6.45050

3 -2.41267 3.71589 -8.59419

4 -2.74519 4.22061 -10.5565

5 -3.04119 4.67094 -12.3853

Table 4: Values ofλn, ωn, Ψ̃n(0), andṼn(0) for the 2-D case

n λn = (2πCn)
1/2 ωn = (4π)−1 ln(2πCn) Ψ̃n(0) = (2πCn)

−1 Ṽn(0) = (4π)−1 ln(2πCn)

−Dn(2πCn)
−1 +[Yn(0)−Dn](2πCn)

−1

0 2.9154 0.3047 0.1177 0.2078

1 3.8888 0.4830 0.0661 0.3810

2 4.4351 0.5650 0.0508 0.4620

3 4.8319 0.6188 0.0428 0.5155

4 5.1496 0.6589 0.0377 0.5554

5 5.4174 0.6909 0.0341 0.5873

obtains the scaling constantλ and the eigenvalueω. The valuesC andD for then-th bound-state

solution,n = 0,1,2,3,4,5, are reported in the 2nd and 3rd columns of Table 3.

From Eq. (2.21) andΨ(0) = 1, one has

λ = (2πC)1/2, (2.22)

ω =
lnλ
2π

− D
λ2

= (4π)−1 ln(2πC)−D(2πC)−1 (2.23)

Ψ̃(0) =
1
λ2 Ψ(0) = (2πC)−1, (2.24)

Ỹ (0) =
1
λ2Y (0) = Y (0)(2πC)−1. (2.25)

Moreover,

Ṽ (0) = Ỹ (0)+ ω

= (4π)−1 ln(2πC)+ [Y(0)−D](2πC)−1. (2.26)

The valuesλ, ω, Ψ̃(0), Ṽ (0) for the n-th bound-state solution,n = 0,1,2,3,4,5, are reported in

Table 4.
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As shown in Figs. 2.1 and 2.3, rapidly increasing precision is required for the shooting parame-

terY (0) to extend the range ofr beforeΨ eventually diverges. In other words, the solution at large

r is extremely sensitive toY (0). This makes it difficult to verify the convergence of the solutions at

larger. On the contrary, for the boundary-value method the boundary conditions are enforced by

the algorithm. The solution is stable with respect to small variation in the initial guesses. To find

a convergent solution that extends to larger, the initial guesses only need to be in an appropriate

neighborhood of the real solutions. The solutions for smallr obtained by the shooting method

serve well for this purpose.

3 Solutions by the Boundary-Value Method

In this section, the ordinary differential equations in Eq.(1.8) with the boundary conditions in

Eqs. (1.9) and (1.12) will be solved by the boundary-value method. In the boundary-value method,

a piecewise cubic polynomial functionS(r) is used, which satisfies the boundary conditions and,

for a selected meshr0 < r1 < · · · < rN , it collocates at the two end points of each subinterval

[ri,ri+1] [19]. In [20, 21] it is shown that this collocation method is equivalent to the 3-stage

Lobatto IIIa implicit Runge-Kutta formula. The adaption ofthe mesh will be determined by the

residual ofS(r) [22]. Since the algorithm must adjust the mesh and findS(r) that matches the

boundary conditions and gives a minimal residual, it is equivalent to a minimum-finding problem.

Its difficulty lies in the need of an initial guess of the eigenvalues and the solutions that are close

enough to the real solutions. As mentioned in section 2, the solutionV is increasing for allr. For

the ground-state solution,Ψ has no zeros and is decreasing for allr. The initial guess should be

made to bear these properties. Moreover, we use the valuesλn, ωn, andΨ̃n(0), Ṽn(0) in tables 2

and 4 as a guidance to the initial guess of the solutions. Within a neighborhood of those values,

solutions that can be extended to arbitrarily larger are found.

3.1 The 1-dimensional case

For the 1-D case, one can use the following functions as the initial guess.

Ψ = ae−(r/λ)2
, (3.1)

V = be−r/b + r, (3.2)

whereλ is the scaling parameter anda = Ψ(0), b = V (0) are the heights. The reason for this

choice is thatΨ = ae−(r/λ)2
is a decreasing function,V = be−r/b + r is an increasing function, and

they satisfy the smoothness condition in Eq. (1.9) and the boundary condition in Eq. (1.12-1). It

turns out that we do not need a precise initial guess. Even though the guess in Eq. (3.1) has no

zeros, it works also for the excited-state solutions. UsingEqs. (3.1) and (3.2) as the initial guess
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Figure 3.5: the solutions of the ground state and the first fiveexcited states for the 1-D case

with λ, a, b, and the corresponding eigenvalueω set to the valuesλn, Ψ̃n(0), Ṽn(0), andωn in

Table 2, we obtain the excited-state solutions as well as theground-state solution. The solutions

are shown in Fig. 3.5.
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3.2 The 2-dimensional case

For the 2-D case, the following functions can be used as the initial guess for the ground state

solution.

Ψ = ae−(r/λ)2
, (3.3)

V =
1
2π

ln
[
r + e2πb exp

(
− r

e2πb

)]
, (3.4)

whereλ is the scaling parameter anda = Ψ(0), b = V (0). The reason for this choice is thatΨ =

ae−(r/λ)2
is a decreasing function,V = 1

2π ln
[
r + e2πb exp

(
−r/e2πb

)]
is an increasing function,

and they satisfy the smoothness condition in Eq. (1.9) and the boundary condition in Eq. (1.12-

2). Different from the 1-D case, more elaborated functions are needed for the initial guess of

excited-state solutions. The short-range solutions obtained by the shooting method can provide

the guidance. The solutions obtained are shown in Fig. 3.6. Alternatively one can also use the

inner-outer-iteration method which uses more iterations systematically to replace the requirement

for more precise initial guesses. The method was developed to find 3-D stationary solutions with

high efficiency [17].

4 Convergence at large distance

In both 1-D and 2-D cases, the solutions are computed in a finite interval[0,rmax] as shown in

Figs. 3.5 and 3.6. Although in practice it is not possible to compute the solutions forrmax→ ∞, it

is essential to make sure that the integrated probability density beyondrmax is negligible and the

variation of solutions as the result of choosing a largerrmax is also negligible. To facilitate the

discussion, let us denote thenth solution on[0,2krmax] asΨk
n(r). We study the convergence of the

solutions for larger by computing|ωk+1
n −ωk

n| and
(
Ψk+1

n −Ψk
n

)
rms asrmax is doubled repeatedly,

where for the 1-D case

(
Ψk+1

n −Ψk
n

)
rms

=

[
1

2krmax

Z 2krmax

0

∣∣∣Ψk+1
n (r)−Ψk

n(r)
∣∣∣
2

dr

]1/2

(4.1-1)

and for the 2-D case

(
Ψk+1

n −Ψk
n

)

rms
=

[
1

π(2krmax)2

Z 2krmax

0

∣∣∣Ψk+1
n (r)−Ψk

n(r)
∣∣∣
2
2πrdr

]1/2

. (4.1-2)

The results are that all the|ωk+1
n −ωk

n| are below 10−16 and all the
(
Ψk+1

n −Ψk
n

)
rms for the 1-D

case are below the precision limit (10−12) of the numerical integration in Eq. (4.1-1). For the 2-D

case
(
Ψk+1

n −Ψk
n

)
rms are shown in Table5. In all the cases as the range of integration is increased,(

Ψk+1
n −Ψk

n

)
rms does not increase. The results verify the convergence of thesolutions for larger.
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Figure 3.6: the solutions of the ground state and the first fiveexcited states for the 2-D case

5 Summary

We have computed 1-D and 2-D solitary symmetric solutions ofthe attractive Schrödinger-

Poisson equations using the shooting method and the boundary-value method. The solutions rep-
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Table 5: the convergence of the 2-D solutions for larger

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

rmax = 175 rmax = 350 rmax = 500 rmax = 700 rmax = 800 rmax = 1000

k = 0 1.1×10−7 6.9×10−8 5.3×10−8 3.8×10−8 3.5×10−8 2.8×10−8

(
Ψk+1

n −Ψk
n

)
rms, k = 1 3.9×10−8 2.5×10−8 1.7×10−8 1.3×10−8 1.2×10−8 9.8×10−9

k = 2 1.4×10−8 8.9×10−9 6.6×10−9 4.8×10−9 4.4×10−9 3.4×10−9

k = 3 5.1×10−9 3.1×10−9 2.4×10−9 1.6×10−9 1.5×10−9 1.2×10−9

resent the self-gravitating effect of massive sheets for the 1-D case and massive wires for the 2-D

case. It is shown that the shooting method can be used to find the solutions in the short range

efficiently, but not in the long range because of its inherentsensitivity to the initial conditions.

Whereas the boundary-value method can be used to compute thesolutions in the full range effi-

ciently if the short range solutions provided by the shooting method is used as the initial guesses.

In this way the two methods complement each other. Convergence analysis shows that the solu-

tions fall off fast enough so that they represent truly localized solutions.
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薛丁格─帕松方程式的一維和二維解 
 

曹景懿*

摘    要 

薛丁格─帕松方程式是一組非線性微分方程式，很多重要的物理問題是以它為骨幹。其中一個令

我們感興趣的問題是重力在量子力學中的效應。由波函數所描述的物質密度分佈透過帕松方程式來決

定重力位能，而位能又反過來經由薛丁格方程式改變物體的波函數。這樣的反饋作用將非線性效應引

進了量子力學中，這些非線性效應具有豐富的數學結構待探索。 
最簡單例子是三度空間中 (1) 單一質點，系統的方程式是三維球對稱；(2) 在 z 方向的一條質量

線，系統的方程式變成二維柱對稱；(3) 在 y-z 平面上的一個質量面，系統的方程式變成一維。我利用

兩種數值方法來研究這些方程式的解，計算它的能譜和對應波函數的寬度及高度的尺度變化。第一種

方法是根基於標準的四階 Runge-Kutta 演算法的 shooting approach，第二種方法是根基於三階段 
Lobatto IIIa 隱性 Runge-Kutta 公式和適應性格點的 boundary-value-problem (BVP) approach。第一種方

法 shooting approach 可將問題簡化成一維的搜尋，藉著調整位能的初始值來找尋符合邊界條件的解。但

是因為解在邊界的行為會隨著初始值劇烈變化，所以此種方法只在短距離內有效。第二種方法 BVP 
approach 是將邊界條件直接內建於程式之中，它的困難在於需要一個相當接近真正解的初始猜測解，

來保障一個收斂的過程，所以我用第一種方法找到的短距離解來輔助猜測，兩種方法相輔相成。 
無論用 shooting approach 或 BVP approach，邊界都不可能真的設在無窮遠，因此找到解之後，我

們會以幾何倍率擴大解的範圍，以確認它在遠處的收斂性。 
關鍵詞︰薛丁格方程式，帕松方程式。 
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