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An Asymptotic Formula for the Solution of a

Singular Perturbation Problem

Shing-Liang Lu�

Abstract

We study, in the rectangle Ω = (0;a)� (0;b), the Dirichlet boundary value problem for the elliptic

partial differential equation

Lu��ε∆u+ pux +guy +qu = f ;

where 0 < ε� 1, ∆ is the Laplacian operator, and the functions p, g, q and f satisfy certain hypotheses;

in particular, p > 0, q � 0. We construct a formal asymptotic expansion of the solution u of this problem

for small ε. This expansion contains the solution of the reduced equation and boundary layer functions.

The parabolic boundary layer functions satisfy a parabolic equation with an unbounded coefficient. We

transform the parabolic equation into a heat equation to develop properties of the parabolic boundary layer.

Estimates for the remainder in the expansion are established that are of the order of magnitude of powers

of ε.

Keywords: singular perturbation, boundary layer.

1 Introduction

We study, in the rectangle Ω = (0;a)� (0;b), the Dirichlet boundary value problem for an

elliptic partial differential equation of the form

Lu��ε∆u+ pux+guy+qu = f (1.1)

with boundary conditions

u(x;y) = 0 on Γ; (1.1a)

where ε is a small parameter 0 < ε� 1, ∆ is the Laplacian operator, and Γ is the boundary of Ω.

The function u satisfies the differential equation in Ω and the boundary conditions on Γ. We shall
�Department of Mathematics, Tunghai University, Taichung 407, TAIWAN
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impose the following hypotheses:

(C1) f is a smooth function in Ω;

(C2) q is a smooth and nonnegative function in Ω;

(C3) g is a smooth function in Ω with g(x;0) = 0; and g(x;b) = 0;

(C4) p is a smooth and positive function in Ω:

In hypotheses (C1)-(C4), “smooth” means at least “C2”. From the assumption that q is nonneg-

ative in Ω, it follows that the problem (1:1);(1:1a) has a unique solution u(x;y;ε). Under the

conditions assumed, it is well known that for a fixed value of ε, the solution u(x;y;ε) is smooth in

Ω.

Confronted with a singular perturbation problem, one is usually interested in constructing an

asymptotic approximation of the function u. Such an approximation contains so called “boundary

layer” term, which are asymptotically equivalent to zero everywhere in Ω exception for a small

neighborhood of a part of the boundary Γ. Moreover, the boundary layer functions occur singular-

ities near the corners (0;0), (0;b).

Some work on problems related to (1:1), (1:1a;b) are contained in Levinson [6], Eckhaus-De

Jaeger [1], Shih-Kellogg [5], Vasil’eva, Butuzov, and Kalachev [7], and A. M. Il’in [3]. In [6]

there is derived an asymptotic approximation to the solution with an error that is uniformly O(
p

ε)
in subregions that are bounded away from characteristic boundaries. The Levinson approximation

contains a boundary layer term, but does not contain terms representing the parabolic layer that

is present near the characteristic boundary of the problem. The papers of [1] and [5] study the

equation

�ε∆u+ux+u = f

in the unit square. (The problem considered in [5] is somewhat more general.) In this case, the

subcharacteristic curves of the reduced equation are lines parallel to the x-axis. An asymptotic

expansion is constructed which has an error that is uniformly small in the square. The expansion

contains both boundary layer terms and parabolic layer terms, the latter having importance on the

horizontal sides, y = 0 and y = 1, of the square. In [7, p.93], the term u x is replaced by εαux, where

α <
1
2 , and the resulting asymptotic expansion is studied. In [3, p.121], the term u x is replaced by

a(x;y)ux with a(x;y)> 0.

In the present work, we study the equation (1:1). Our purpose is to construct a formal asymp-

totic expansion of the solution u of (1:1) for small ε and give a proof of its uniform validity in the

closed rectangle. This expansion contains the solution of the reduced equation and boundary layer

functions whose roles are to correct the discrepancy between the boundary data and the boundary

values of this reduced problem. The parabolic boundary layer functions satisfy a parabolic equa-

tion with an unbounded coefficient. We transform the parabolic equation into a heat equation to

develop properties of the parabolic boundary layer. In fact, the equation (1:1) can be transformed
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into an equation whose characteristic curves are parallel to the new “x-axis” by making a change

of coordinates. The speciality of this paper is the easy computation of the approximate solution

and a convenient estimate of the error term φ under Euclidean coordinates. The main tool used in

this paper for estimating the solution of the elliptic boundary value problem (1:1);(1:1a) is fur-

nished by the so-call maximum principle and the concept of barrier function. For the proof of the

maximum principle see Eckhaus and De Jager [1]. We are ready to state the maximum principle.

MAXIMUM PRINCIPLE. Let Φ and Ψ be twice continuously differentiable functions in Ω
such that

jL[Φ]j � L[Ψ] in Ω;

jΦj �Ψ on Γ:

Then

jΦj �Ψ in Ω:

In Chapter 2, there are given some properties of the solution of the reduced equation; that is,

the equation that is obtained from (1:1) by setting ε = 0. Chapter 3 contains the full boundary

layer analysis. Chapter 4 gives bound for the error in the expansion.

2 The Reduced Equation

In order to obtain a first rough approximation of the function u(x;y;ε) for small values of the

parameter ε, we consider a function v0(x;y) which satisfies the differential eqation obtained from

(1:1) by putting ε = 0. This hyperbolic equation is called the reduced equation and reads as

follows:

pv0x +gv0y +qv0 = f :

The function v0(x;y) can satisfy only one of the prescribed boundary conditions

v0(0;y) = 0;

and

v0(a;y) = 0:
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Theorem 2.1 There exists a positive constant C independent of ε such that the inequality

ju(x;y;ε)j �Cx (2.1)

holds uniformly in the closure of Ω for all values of ε.

Proof: We introduce the barrier function Ψ(x) =Cx, where C is some positive constant inde-

pendent of ε. By taking C sufficiently large it follows that the inequalities

ju(x;y;ε)j �Ψ(x)

on the boundary of Ω and

jL[u]j � L[Ψ]

in Ω can be satisfied for all values of ε. Applying the maximum principle, we get the desired

inequality (2:1) uniformly valid in the closure of Ω for all values of ε. 2

According to Theorem 2.1, as ε tends to zero, we are led to the inequality

jv0(x;y)j �Cx:

Therefore v0(0;y) = 0 is the proper condition for the solution v 0(x;y). The solution of this reduced

equation is an ingredient in the asymptotic expansion of u. The characteristic curves of this re-

duced equation, also called subcharacteristic curves of equation (1:1) are defined by y = φ(x;y 0),

where the function φ defined on 0� x� a for all 0� y 0 � b, with φ(x;0) = 0, φ(x;b) = b satisfies

the initial value problem

dφ
dx

=
g(x;φ)
p(x;φ)

; (2.2)

φ(0;y0) = y0:

By existence and uniqeness theorem and the properties of maximum solution of ordinary differ-

ential equations, the characteristic curves cover the whole rectangle Ω as y 0 varies in the interval

[0;b] under the assumptions for p and g. Also, by the uniqueness theorem for solutions of ordinary

differential equations, φ(x;y0) is strictly increasing in y0 so we can write y0 = ψ(x;y). According

to E. L. Ince[4, Chapter 3], φ(x;y0) has continuous first-order partial derivatives on Ω. Moreover,

it is not hard to prove that the function φ(x;y0) is twice continuously differentiable with respect

to y0 on Ω by following [4, p.69]. Thus, from equation (2:2), it follows that φ has continuous

second-order partial derivatives on Ω.

Lemma 2.2 The function ψ(x;y) has continuous second-order partial derivatives on Ω.
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Proof: First we show that ψ(x;y) is twice continously differentiable with respect to x on Ω.

For each point (x;y) in Ω. By the definition of ψ, one has

y = φ(x;ψ(x;y));

y+ k = φ(x+h;ψ(x+h;y+ k)):

Hence

φ(x+h;ψ(x+h;y+ k))�φ(x;ψ(x;y))

= φ(x+h;ψ(x+h;y+ k))�φ(x+h;ψ(x;y))+φ(x+h;ψ(x;y))�φ(x;ψ(x;y))

= φy0(x+h; ȳ0)[ψ(x+h;y+ k)�ψ(x;y)]+ [φ(x+h;ψ(x;y))�φ(x;ψ(x;y))]

= k:

(2.3)

Here ȳ0 comes from mean value theorem. So

jφy0(x+h; ȳ0)[ψ(x+h;y+ k)�ψ(x;y)]j
� jkj+ jφ(x+h;ψ(x;y))�φ(x;ψ(x;y))j
� jkj+Mjhj;

where M is positive constant such that jφxj �M on Ω. From the fact that φy0 > 0 on Ω, it follows

that ψ is continuous at (x;y). Furthermore, dividing both sides of the last equality of the sequence

of formulas (2:3) for k = 0 by h, one has

ψ(x+h;y)�ψ(x;y)
h

=�
φ(x+h;ψ(x;y))�φ(x;ψ(x;y))

h
�

1
φy0(x+h; ȳ0)

:

As h tends to zero, the right side of above equation tends to � φx(x;ψ(x;y))
φy0 (x;ψ(x;y)) . Thus the derivative of

ψ with respect to x at the point (x;y) exists and

ψx(x;y) =�
φx(x;ψ(x;y))
φy0(x;ψ(x;y))

: (2.4)

Since the point (x;y) is arbitrary in Ω, ψ(x;y) is continuously differentiable with respect to x on

Ω. From formula (2:4), it is clearly that the derivative ψ x(x;y) is continuously differentiable with

respect to x on Ω. Now, fix x 2 [0;a]. ψ(x; �) is the inverse of φ(x; �). Since φ is twice continuously

differentiable with respect to y0 on Ω, it is clearly that ψ is twice continuously differentiable

with respect to y on Ω. Finally, from formula (2:4), one obtains that the derivative ψ x(x;y) is

continuously differentiable with respect to y on Ω. 2

The function v0 is now easily determined, and the result is

v0(x;y) =
Z x

0
exp

�
�
Z x

s

q(τ;φ(τ;ψ(x;y)))
p(τ;φ(τ;ψ(x;y)))

dτ
�

f (s;φ(s;ψ(x;y)))
p(s;φ(s;ψ(x;y)))

ds:

Then we have

L(u� v0) = ε∆v0:
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Moreover, it follows that ∆v0 is uniformly bounded on Ω from preceding argument regarding

functions φ and ψ, and the assumptions for p, g, q and f . It is quite evident that this approximation

for u(x;y;ε) is not valid in a neighborhood of three parts of the boundary of Ω, x = a, y = 0, and

y = b, and is valid in the remaining subregion of Ω including the neighborhood of the boundary

x = 0 up to the order O(ε). To obtain a “uniform” approximation of the solution u in Ω, we

eliminate these discrepancies along the boundaries x = a, y = 0, and y = b by introducing other

functions, called boundary layer functions, along the three boundaries.

3 The Boundary Layer Functions

In Chapter 2, we obtained an approximate solution v 0, to (1.1) by solving the reduced differential

equation. Unfortunately, this approximate solution does not satisfy the given boundary conditions.

The boundary layer functions, which we now define, are designed to correct this discrepancy in

the boundary data of u� v0. For this, we introduce a stretched variable η = y=
p

ε, and make a

formal expansion in powers of
p

ε. we note the formula

Lw(x;η) =�εwxx(x;η)�wηη(x;η)+ p(x;y)wx(x;η)+g(x;y)
1
p

ε
wη(x;η)+q(x;y)w(x;η):

We make a formal expansion of the equation Lw = 0 into powers of
p

ε, and equate to zero the

coefficients of powers of ε
1
2 , to define w(1)

0 by

�w(1)
0ηη + p(x;0)w(1)

0x +gy(x;0)ηw(1)
0η +q(x;0)w(1)

0 = 0; (3.1)

We must specify boundary conditions to complete the determination of the w (1)
0 . We specify the

boundary conditions

w(1)
0 (x;0) =�v0(x;0); (3.1a)

w(1)
0 (0;η) = 0; (3.1b)

w(1)
0 (x;∞) = 0: (3.1c)

In order to obtain a solution, we make the following change of independent variables:

t =
Z h(x)

0
e
�2

R h�1(τ)
0

gy(s;0)
p(s;0) ds

dτ; ξ = ηe
�

R x
0

gy(s;0)
p(s;0) ds

;

and introduce the new dependent variable

w(t;ξ) = ek(x)w(1)
0 (x;η);
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where

h(x) =
Z x

0

1
p(s;0)

ds; k(x) =
Z x

0

q(s;0)
p(s;0)

ds

for all x 2 [0;a]. Here h�1 is the inverse of h. A computation then gives

�wξξ +wt = 0 (3.2)

with the boundary conditions

w(t;0) =�ek(x)v0(x;0);

w(0;ξ) = 0;

w(t;∞) = 0:

We then have

w(t;ξ) =�
r

2
π

Z ∞

ξp
2t

e�
s2
2

Z r�1(t� ξ2

2s2 )

0
e
R τ

0
q(ζ;0)
p(ζ;0) dζ f (τ;0)

p(τ;0)
dτds; (3.3)

where r(x) =
R h(x)

0 e
�2

R h�1(τ)
0

gy(s;0)
p(s;0) ds

dτ for all x 2 [0;a] and r�1 is the inverse of r. It follows that

the problem (3:1), (3:1a;b;c) has a unique solution w (1)
0 .

Lemma 3.1 Under the hypotheses (C1)� (C4), One obtains

jDi
twj �Ce

� ξp
2t for i = 0;1;

jDξwj �C t
ξ e

� ξp
2t ;

jDtDξwj �C[
1p
2t

e
� ξp

2t +
t
ξ e

� ξp
2t ];

jD2
ξwj �Ce

� ξp
2t
;

where C is a positive constant independent of ε.

Proof: It is easy to see from formula (3:3) that

jDi
twj �C

Z ∞

ξp
2t

e�
s2
2 ds

for i = 0;1,

jDξwj �C
Z ∞

ξp
2t

ξ
s2 e�

s2
2 ds;

and

jDtDξwj �C[
1
p

2t
e
� ξp

2t +

Z ∞

ξp
2t

ξ
s2 e�

s2
2 ds];
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where C is a positive constant independent of ε. Moreover,

e�
s2
2 � e

1
2�s

= e
1
2 e�s

so

jDi
twj �C

Z ∞

ξp
2t

e�sds =Ce
� ξp

2t

for i = 0;1,

jDξwj �C
t
ξ

Z ∞

ξp
2t

e�sds =C
t
ξ

e
� ξp

2t
;

and

jDtDξwj �C[
1
p

2t
e
� ξp

2t +
t
ξ

Z ∞

ξp
2t

e�sds] =C[
1
p

2t
e
� ξp

2t +
t
ξ

e
� ξp

2t ];

where C is a positive constant independent of ε. From equation (3:2), we have

jD2
ξwj= jDtwj �Ce

� ξp
2t

2

From above lemma, it follows that

jw(1)
0 (x;η)j= je�k(x)w(t;ξ)j �Ce�k(x)e

� ξp
2t �Ce�k(x)e

� ηp
2h(x)

Theorem 3.2 Under the hypotheses (C1)� (C4), one obtains

jηw(1)
0 (x;η)j �Ce�k(x)e

� η
2
p

2h(x)
;

jηDxw(1)
0 (x;η)j �Ce�k(x)e

� η
2
p

2h(x)
;

jη2Dηw(1)
0 (x;η)j �Ce�k(x)e

� η
2
p

2h(x)
;

where C is a positive constant independent of ε.

Proof: From the formula

w(1)
0 (x;η) = e�k(x)w(t;ξ)
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and Lemma 3.1, we have

jηw(1)
0 (x;η)j � Cηe�k(x)e

� ηp
2h(x)

� ηp
2h(x)

p
2h(x)e�k(x)e

� ηp
2h(x)

� Ce�k(x)e
� η

2
p

2h(x)
;

jηDxw(1)
0 (x;η)j � Ce�k(x)

�
jηw(t;ξ)j+ e

�2
R x

0
gy(s;0)
p(s;0) dsjηDtw(t;ξ)j+ jηξwξ(t;ξ)j

�

� Ce�k(x)

�
ηe

� ξp
2t +ηe

�2
R x

0
gy(s;0)
p(s;0) ds

e
� ξp

2t +ηte
� ξp

2t

�

� Ce�k(x)

�
ηe

� ηp
2h(x) +ηe

�2
R x

0
gy(s;0)
p(s;0) ds

e
� ηp

2h(x) +ηte
� ηp

2h(x)

�

� Ce�k(x)

�p
2h(x)e

� η
2
p

2h(x) +

p
2h(x)e

�2
R x

0
gy(s;0)
p(s;0) ds

e
� η

2
p

2h(x)

+

p
2h(x)te

� η
2
p

2h(x)

�

� Ce�k(x)e
� η

2
p

2h(x)
;

jη2Dηw(1)
0 (x;η)j � e�k(x)jη2Dξw(t;ξ)je�

R x
0

gy(s;0)
p(s;0) ds

� Ce�k(x)ηte
� ηp

2h(x)

� Ce�k(x)
p

2h(x)te
� η

2
p

2h(x)

� Ce�k(x)e
� η

2
p

2h(x)
;

where C is a positive constant independent of ε. 2

By above analysis, the weighted derivatives ηDxw(1)
0 and η2Dηw(1)

0 are uniformly bounded in

Ω. However,

D2
xw(1)

0 =

r
2
π

�
�

ξ

(2t)
3
2

e�
ξ2

4t f (0;0)e
�4

R x
0

gy(s;0)
p(s;0) ds

h0(x)2
+ I

�
e�k(x)

;

where I is a function that is uniformly bounded in Ω. The derivative thus posses singularity at the

origin.

In a manner similar to the construction of the w (1)
0 , we define a stretched variable η̄ =

b�yp
ε , and

we define the function w(2)
0 satisyind the equation

�w(2)
0η̄η̄ + p(x;b)w(2)

0x +gy(x;b)η̄w(2)
0η̄ +q(x;b)w(2)

0 = 0;

with he boundary conditions

w(2)
0 (x;0) =�v0(x;b);

w(2)
0 (0; η̄) = 0;

w(2)
0 (x;∞) = 0:
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Analogously, the weighted derivatives η̄Dxw(2)
0 and η̄2Dηw(2)

0 are uniformly bounded in Ω. How-

ever, the derivative D2
xw(2)

0 posses singularity at the point x = 0, y = b. We also define the functions

R(1;2)
0 by the relation

R(1;2)
0 = L[w(1;2)

0 ]:

Then

R(1)
0 = �εw(1)

0xx

+
p

ε
�

p(x;y)�p(x;0)p
ε w(1)

0x +
g(x;y)�gy(x;0)y

ε w(1)
0η +

q(x;y)�q(x;0)p
ε w(1)

0

�

and

R(2)
0 = �εw(2)

0xx

+
p

ε
�

p(x;y)�p(x;b)p
ε w(2)

0x �
g(x;y)�gy(x;b)(y�b)

ε w(2)
0η̄ +

q(x;y)�q(x;b)p
ε w(2)

0

�
:

According to the hypotheses (C2), (C3), and (C4), we obtain the estimate

R(1;2)
0 = O(

p
ε)

valid uniformly in Ω, with the exception of small fixed neighborhood of the corner points x = 0,

y = 0 and x = 0, y = b. The estimate is valid in, say, δ� x� a, 0� y� b, where δ is a small fixed

positive number. However, we shall need estimate valid in a more extended region G, defined by

εα � x� a, 0� y� b, where 0<α < 1. The estimate follows from analysis of corner singularities

that are present in R(1;2)
0 . Using the inequality

ξ

(4t)
1
2

e�
ξ2

4t < 1;

valid uniformly in 0� x� a, 0� y� b, we find the estimate

R(1;2)
0 = O(εmin( 1

2 ;1�α)
)

in G. We write

u = v0 +w(1)
0 +w(2)

0 +Z:

There remains then to be solved the following problem:

�ε∆Z + pZx +gZy+qZ = ε∆v0�R(1)
0 �R(2)

0 ;

Z(0;y) = 0;

Z(a;y) =�v0(a;y)�w(1)
0 (a; yp

ε )�w(2)
0 (a; b�yp

ε );

Z(x;0) =�w(2)
0 (x; bp

ε );

Z(x;b) =�w(1)
0 (x; bp

ε ):
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We find that Z is not very small near the boundary x= a. For this, we introduce a stretched variable

X =
a�x

ε . Note that

LZ(X ;y) =�
1
ε

ZXX � εZyy�
1
ε

pZX +gZy +qZ:

We make a formal expansion of the equation LZ = 0 into powers of ε, and equate to zero the

coefficients of powers of ε, to define Z0;Z1;Z2 by

Z0XX + p(a;y)Z0X = 0;

Z1XX + p(a;y)Z1X = px(a;y)XZ0X +g(a;y)Z0y +q(a;y)Z0;

Z2XX + p(a;y)Z2X = �Z0yy� 1
2 pxx(a;y)X2Z0X + px(a;y)XZ1X �gx(a;y)XZ0y

+g(a;y)Z1y +q(a;y)Z1�gx(a;y)XZ0:

We use the boundary conditions

Z0(0;y) = ψ(y); Z1(0;y) = 0; Z2(0;y) = 0;

Zi(X ;y)! 0 as X ! ∞; i = 0;1;2;

where ψ(y) =�v0(a;y)�w(1)
0 (a; yp

ε )�w(2)
0 (a; b�yp

ε ). For the function

Z�(X ;y;ε) = Z0(X ;y;ε)+ εZ1(X ;y;ε)+ ε2Z2(X ;y;ε);

we then have

L(Z�) = R2;

R2 is given by

R2 = �ε2Z1yy� ε3Z2yy +
1
6 ε2 pxxx(a1;y)X3Z0X � 1

2 ε2 pxx(a2;y)X2Z1X

+ε2 px(a3;y)XZ2X +
1
2 ε2gxx(a4;y)X2Z0y� ε2gx(a5;y)XZ1y + ε2g(x;y)Z2y

+ε2q(x;y)Z2 +
1
2 ε2qxx(a6;y)X2Z0� ε2qx(a7;y)XZ1:

Here a1;a2;a3;etc: come from Taylor Theorem. The explicit calculation of the functions Z 1 and

Z2 is complicated, but these functions can be shown to be of the following general form:

Z0(X ;y;ε) = ψ(y)e�p(a;y)X
;

Z1(X ;y;ε) =

�
[r1(y)X2

+ r2(y)X ]ψ(y)+ r3(y)X d
dy ψ

�
e�p(a;y)X

;

Z2(X ;y;ε) =

�
[(s1(y)X4

+ s2(y)X3
+ s3(y)X2

+ s4(y)X ]ψ(y)

+[s5(y)X3
+ s6(y)X2

+ s7(y)X ]
d
dy ψ+ s8(y)X d2

dy2 ψ
�

e�p(a;y)X
;

where the functions s1;s2;r1;etc. are all uniformly bounded and as are their derivatives with

respect to y. Now we have

dn

dyn ψ = O(ε�
1
2 n
) for n = 0;1;2;3;4:
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It follows that

R2 = O(
p

ε):

Returning to the boundary value problem (1:1);(1:1a), we summarize our results by writing

u(x;y;ε) = v0(x;y)+w(1)
0 (x;

y
p

ε
)+w(2)

0 (x;
b� y
p

ε
)+Z�(

a� x
ε

;y;ε)+φ(x;y;ε): (3.4)

The remainder term φ is a solution of the equation

L(φ) = R;

R is given by

R =�ε∆v0�R(1)
0 �R(2)

0 �R2:

In the subregion G, we have

R = O(εmin( 1
2 ;1�α)

):

We proceed to analyse the boundary conditions for the function φ. These are

φ(0;y) =�Z�( a
ε ;y;ε);

φ(a;y) = 0;

φ(x;0) =�w(2)
0 (x; bp

ε )�Z�( a�x
ε ;0;ε);

φ(x;b) =�w(1)
0 (x; bp

ε )�Z�( a�x
ε ;b;ε):

Utilizing the explicit results for the boundary layer functions, we have

φ = O(
p

ε) on Γ: (3.5)

4 Asymtotic Representation of the Solution

In order to estimate the remainder term φ(x;y;ε) in (3:4), we need the following result, which

is a consequence of the maximum principle.

Theorem 4.1 If Φ(x;y;ε) is the solution of the boundary value problem

L[Φ] = h(x;y;ε);

valid in Ω with

Φ(x;y;ε)jΓ = Ψ(x;y;ε)jΓ
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along the boundary Γ of Ω, and if

h(x;y;ε) = O(εµ
) in Ω; µ� 0;

and

Ψ(x;y;ε) = O(εν
) along Γ; ν� 0;

then at most

Φ(x;y;ε) = O

�
εmin(µ;ν)

�
in Ω:

Let us define the subregion G�:

(x;y) 2 G� if 0� x� εα
; 0� y� b; 0 < α < 1:

It follows from Theorem 2.1 that

u(x;y;ε) = O(εα
) in G�

:

Moreover, using in equation (3:4) the explicit definition of the function v 0, w(1;2)
0 , and Z�, one

finds without difficult that

φ = O(εα
) in G�

: (4.1)

We next consider the subregion G. In this region we have the equation

L(φ) = R = O(εmin( 1
2 ;1�α)

): (4.2)

Moreover, result (4:1) also holds at the boundary x = ε α of G. Together with the result (3:5) we

obtain

φ = O(εmin( 1
2 ;α)

) on ∂G: (4.3)

To the boundary value problem (4:2);(4:3), we apply Theorem 4.1, it follows that

φ = O(εmin( 1
2 ;α;1�α)

) in G: (4.4)

Combining results (4:1) and (4:4), we obtain

φ = O(εmin( 1
2 ;α;1�α)

) in Ω:

Hence the optimal choice of α is α =
1
2 and then

φ = O(

p
ε) in Ω:
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Finally we analyze more closely the boundary layer function Z appearing in that expansion. From

the explicit formulas one easily finds

Z� = ψ(y)exp

�
�p(a;y)

a� x
ε

�
+O(

p
ε):

Hence we have established the following theorem:

Theorem 4.2 If the function u satisfies the boundary value problem (1:1), (1:1a), then uniformly

in Ω, including all four corner points,

u(x;y;ε) = v0(x;y)+w(1)
0 (x;

y
p

ε
)+w(2)

0 (x;
b� y
p

ε
)+ψ(y)exp

�
�p(a;y)

a� x
ε

�
+O(

p
ε):
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一個奇界攝動問題解的漸近形式 
 

盧性良* 

摘    要 

我們探討橢圓偏微方程 

,ε fqugupuuLu yx =+++∆−≡  

在四方形 ),0(),0( ba ×=Ω 上的 Dirichlet邊界值問題，其中 0< ε <<1，∆是 Laplacian運算，而且 p, g, 

q 和  f 滿足某些假設；特別是 p>0, 0≥q 。對很小的 ε ，我們構造這個問題的解的一個形式的漸

近展開。這個展開式包含退化方程的解和邊界層函數。拋物線邊界層函數滿足一個拋物線方程，其

具有一個無界的係數。我們轉換此拋物線方程成一個熱方程，以此來討論拋物線邊界層函數的性質。

最後這個展開式的剩餘項被估計為 ε 的次方。 

 
關鍵詞：奇界攝動，邊界層。 
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