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An Asymptotic Formulafor the Solution of a
Singular Perturbation Problem

Shing-Liang Lu*

Abstract

We study, in the rectangle Q = (0,a) x (0,b), the Dirichlet boundary value problem for the elliptic
partial differential equation

Lu= —eAu+ pux+guy +qu=f,
where 0 < e <« 1, A is the Laplacian operator, and the functions p, g, g and f satisfy certain hypotheses;
in particular, p > 0, g > 0. We construct a formal asymptotic expansion of the solution u of this problem
for small e. This expansion contains the solution of the reduced equation and boundary layer functions.
The parabolic boundary layer functions satisfy a parabolic equation with an unbounded coefficient. We
transform the parabolic equation into a heat equation to develop properties of the parabolic boundary layer.

Estimates for the remainder in the expansion are established that are of the order of magnitude of powers
of e.

Keywords: singular perturbation, boundary layer.

1 Introduction

We study, in the rectangle Q = (0,a) x (0,b), the Dirichlet boundary value problem for an
elliptic partial differential equation of the form

Lu= —eAu+ pux+guy+qu= f (1.2

with boundary conditions

u(x,y)=0 on T, (1.19)

wheree isasmall parameter 0 < € < 1, A isthe Laplacian operator, and T is the boundary of Q.
The function u satisfies the differential equation in © and the boundary conditionson I". We shall
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impose the following hypotheses:

(C1) f isasmooth functionin Q;

(C2) gisasmooth and nonnegativefunctionin Q;

(C3) gisasmooth functionin Q with g(x,0) = 0, and g(x,b) = 0;

(C4) pisasmooth and positive functionin Q.

In hypotheses (C1)-(C4), “smooth” means at least “C?”. From the assumption that g is nonneg-
ative in Q, it follows that the problem (1.1),(1.1a) has a unique solution u(x,y,€). Under the
conditions assumed, it is well known that for a fixed value of €, the solution u(x,y,€) is smooth in
Q.

Confronted with a singular perturbation problem, one is usually interested in constructing an
asymptotic approximation of the function u. Such an approximation contains so called * boundary
layer” term, which are asymptotically equivalent to zero everywhere in Q exception for a small
neighborhood of apart of the boundary I". Moreover, the boundary layer functions occur singular-
ities near the corners (0, 0), (0,b).

Some work on problemsrelated to (1.1), (1.1a,b) are contained in Levinson [6], Eckhaus-De
Jaeger [1], Shih-Kellogg [5], Vasil'eva, Butuzov, and Kalachev [7], and A. M. II'in [3]. In [6]
thereis derived an asymptotic approximation to the solution with an error that is uniformly O( 1/¢)
in subregionsthat are bounded away from characteristic boundaries. The Levinson approximation
contains a boundary layer term, but does not contain terms representing the parabolic layer that
is present near the characteristic boundary of the problem. The papers of [1] and [5] study the
equation
—eAU+Ux+u=f

in the unit square. (The problem considered in [5] is somewhat more general.) In this case, the
subcharacteristic curves of the reduced equation are lines parallel to the x-axis. An asymptotic
expansion is constructed which has an error that is uniformly small in the square. The expansion
contains both boundary layer terms and parabolic layer terms, the latter having importance on the
horizontal sides, y=0andy = 1, of thesquare. In[7, p.93], theterm uy isreplaced by £*uy, where
o< % and the resulting asymptotic expansion is studied. In [3, p.121], the term u y is replaced by
a(x,y)ux with a(x,y) > 0.

In the present work, we study the equation (1.1). Our purposeis to construct a formal asymp-
totic expansion of the solution u of (1.1) for small € and give aproof of its uniform validity in the
closed rectangle. This expansion contains the solution of the reduced equation and boundary layer
functions whose roles are to correct the discrepancy between the boundary data and the boundary
values of this reduced problem. The parabolic boundary layer functions satisfy a parabolic equa-
tion with an unbounded coefficient. We transform the parabolic equation into a heat equation to
develop properties of the parabolic boundary layer. In fact, the equation (1.1) can be transformed
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into an equation whose characteristic curves are parallel to the new “x-axis’ by making a change
of coordinates. The speciality of this paper is the easy computation of the approximate solution
and a convenient estimate of the error term ¢ under Euclidean coordinates. The main tool used in
this paper for estimating the solution of the elliptic boundary value problem (1.1), (1.1a) is fur-
nished by the so-call maximum principle and the concept of barrier function. For the proof of the
maximum principle see Eckhaus and De Jager [1]. We are ready to state the maximum principle.

MAXIMUM PRINCIPLE. Let ® and W be twice continuously differentiable functions in Q
such that

IL[@]| <L[¥] in,

|®| <¥ onT.
Then

@] <¥ inQ.

In Chapter 2, there are given some properties of the solution of the reduced equation; that is,
the equation that is obtained from (1.1) by setting € = 0. Chapter 3 contains the full boundary
layer analysis. Chapter 4 gives bound for the error in the expansion.

2 TheReduced Equation

In order to obtain a first rough approximation of the function u(x,y,€) for small values of the
parameter €, we consider a function vo(x,y) which satisfies the differential egation obtained from
(1.1) by putting € = 0. This hyperbolic equation is called the reduced equation and reads as
follows:

PVox + Qvoy + Qvo = .

The function vp(X,y) can satisfy only one of the prescribed boundary conditions
VO(OJ y) = 07
and

VO(aJ y) =0.
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Theorem 2.1 There exists a positive constant C independent of € such that the inequality
lu(x,y,e)] < Cx (2.1)
holds uniformly in the closure of Q for all values of .

Proof: We introduce the barrier function W(x) = Cx, where C is some positive constant inde-
pendent of €. By taking C sufficiently largeit follows that the inequalities

u(x,y,&)| <*¥(x)
on the boundary of Q and
|L[u]| < L[W]

in Q can be satisfied for all values of €. Applying the maximum principle, we get the desired
inequality (2.1) uniformly valid in the closure of Q for all values of €. |
According to Theorem 2.1, as € tends to zero, we are led to the inequality

[Vo(x,y)| < Cx.

Thereforevg(0,y) = Oisthe proper condition for the solution vo(x,y). The solution of this reduced
equation is an ingredient in the asymptotic expansion of u. The characteristic curves of this re-
duced equation, also called subcharacteristic curves of equation (1.1) are defined by y = ¢(X,y o),
where the function ¢ defined on 0 < x < aforall 0 < yp < b, with ¢(x,0) = 0, ¢(x,b) = b satisfies
theinitial value problem

do _ g(x,9)
dx  p(x,¢)’ @2
¢(07 yO) = Yo.

By existence and unigeness theorem and the properties of maximum solution of ordinary differ-
ential equations, the characteristic curves cover the whole rectangle Q asyg variesin the interval
[0, b] under the assumptionsfor p and g. Also, by the uniquenesstheorem for solutions of ordinary
differential equations, ¢(x,Yyo) is strictly increasing in yo so we can write yo = y(X,y). According
to E. L. Ince[4, Chapter 3], d(x,Yo) has continuous first-order partial derivatives on Q. Moreover,
it is not hard to prove that the function ¢(x,yo) is twice continuously differentiable with respect
to yo on Q by following [4, p.69]. Thus, from equation (2.2), it follows that ¢ has continuous
second-order partial derivatives on Q.

Lemma 2.2 The function y(x,y) has continuous second-order partial derivatives on Q.
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Proof: First we show that y(x,y) is twice continously differentiable with respect to x on Q.
For each point (x,y) in Q. By the definition of y, one has

y=0(xy(xy)),
y+k=o(X+ h,y(x+h,y+Kk)).

Hence

¢(X+ h:W(X+ h7y+ k)) - q)(X;W(X;y))
= 0(X+ h,y(X+h,y+K)) — o(X+h,w(x,y)) + 0(X+h,w(X,y)) — d(X, w(xy))

= byo X+, Y0) [W(X+ D,y +K) —w(xy)] + [0(x+ h, w(x,Y)) — 6%, W(X,y))]
=k

(2.3)

Here yp comes from mean value theorem. So

|y, (X+ 0, Yo) [W(X+h,y +K) —w(Xy)]|
<K+ [0(x+h,w(x,y)) — 00, w(x,y))]
< |kl +Mihl,

where M is positive constant such that [¢x| < M on Q. From the fact that ¢y, > 0 0on Q, it follows
that v is continuous at (x,y). Furthermore, dividing both sides of the last equality of the sequence
of formulas (2.3) for k=0 by h, one has

Y(x+hy)—wxy) _ ox+hyxy)—oxwxy) 1

h B h q)yO (X + h: y_O) ‘
As h tendsto zero, the right side of above equation tendsto — %. Thus the derivative of
y with respect to x at the point (x,y) exists and
q)X(X; W(Xa y))
Xy) = —— =22 (2.9
W) == oowxy)

Since the point (x,y) is arbitrary in Q, y(x,y) is continuously differentiable with respect to x on

Q. From formula (2.4), it is clearly that the derivative y(x,y) is continuously differentiable with

respect to x on Q. Now, fix x € [0,a]. y(x,-) istheinverse of ¢(x,-). Since ¢ istwice continuously

differentiable with respect to yo on Q, it is clearly that y is twice continuously differentiable

with respect to y on Q. Finally, from formula (2.4), one obtains that the derivative y«(X,y) is

continuously differentiable with respect to'y on Q. |
Thefunction vg is now easily determined, and theresult is

*q(t,0(t,w(x,y))) (s,0(s,y(x,Y)))
ooy = [ee{ - [ BT R e e

Then we have
L(u—vo) = €Avp.



Moreover, it follows that Avg is uniformly bounded on Q from preceding argument regarding
functions ¢ and , and the assumptionsfor p, g, gand f. Itisquite evident that this approximation
for u(x,y,€) isnot vaid in a neighborhood of three parts of the boundary of Q, x=4a, y= 0, and
y = b, and is valid in the remaining subregion of Q including the neighborhood of the boundary
x = 0 up to the order O(e). To obtain a “uniform” approximation of the solution u in Q, we
eliminate these discrepancies along the boundariesx = a, y = 0, and y = b by introducing other
functions, called boundary layer functions, along the three boundaries.

3 TheBoundary Layer Functions

In Chapter 2, we obtained an approximate solution v, to (1.1) by solving the reduced differential

equation. Unfortunately, this approximate solution does not satisfy the given boundary conditions.

The boundary layer functions, which we now define, are designed to correct this discrepancy in

the boundary data of u— vq. For this, we introduce a stretched variable n = y/ /€, and make a
formal expansionin powers of /€. we note the formula

LW(X:T]) = _EWXX(Xan) - WT]YI (Xvn) + p(X7 Y)WX(XJ]) + g(X7 y)%wﬂ (Xvn) + Q(X, y)W(Xvn)

We make a formal expansion of the equation Lw = 0 into powers of /€, and equate to zero the
coefficients of powers of e , to define ng) by
—wg])n + p(x, O)Wéi) +0y(X O)nwg]) +q(x, O)ng) =0, (3.1

We must specify boundary conditions to complete the determination of the wgl). We specify the
boundary conditions

W(()l) (x,0) = —vo(x,0), (3.19)
wg? (0,n) =0, (3.1b)
Wi (x,00) = 0. (3.10)

In order to obtain a solution, we make the following change of independent variables:

h(x) h—1(1) gy(s.0) x Oy(s.0)
t:/ e 2h p(s0) dsdr, E=me 0 0s0 ds,
0

and introduce the new dependent variable

w(t,&) = &Xwi? (x,m),



where

1 _ [*4q(s,0)
mw_ﬂ;m&®d$ Mm_x;mamds

for al x € [0,a). Hereh~tisthe inverse of h. A computation then gives
—Weg +w =0

with the boundary conditions

We then have

2
o 2 - rao
wig) =2 [1 et [F S0

p(t,0)

(80) 45
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(3.2)

(3.3)

h=(r)
wherer(x) = f(?(x) e 2h Ps0) dt for all x € [0,a) and r L istheinverse of r. It follows that

the problem (3.1), (3.1a, b, c) has aunique solution w(()l) .

Lemma 3.1 Under the hypotheses (C1) — (C4), One obtains

. &
[IDiw| <Ce vZ for i=0,1,
5
|D§W| < C%e Va2t
5 _&

|DthJW| < C[};/—lze VA 4 %e \/Z],
IDfw| < Ce ™ V2,

where C is a positive constant independent of .

Proof: It is easy to see from formula (3.3) that

. 0 2
|mwgc/€€7®
V2t

fori=0,1,
i 2
IDew| <C [, Ee‘?ds,
% g
vz
and
1 & > ¢
IDiDew| < C[—=e vZ + : ?e zdg,
A 7
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where C is a positive constant independent of €. Moreover,

e’% Se%fs:e%efs
S0
i « _5
|Dyw| SC/& e Sds=Ce V2
N
fori=0,1,
t [~ _s t &
|D§W|SC_/& e Sds=C.e V&,
&/ 5 3
and
|IDiDew| < C| 1 e_%+t/w e %dsg =C| L e_%+te_%]
t > — = = R _ ,
& va S/ NE: g

where C is a positive constant independent of €. From equation (3.2), we have

R
IDZw| = [Dyw| < Ce™ VE

From above lemma, it follows that

4 __n_
w6 e = & i, £)| < CeKe™ 8 < Ce e Vv

Theorem 3.2 Under the hypotheses (C1) — (C4), one obtains

__n
|T|W(()1) (x,m)| < Ce*¥e 2V
__n
|anW(()l) (x,n)| < CekX¥g 2 o
__n
|T]2angl) (x,m)| < Ce ke v

where C is a positive constant independent of .

Proof: From the formula

g (x,m) = e Mw(t, E)
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and Lemma 3.1, we have

n

Wl (xn)| < Cne KWe vaw
n
1 kX g V2%
< =2 We
. n
< Ce ke 22
[ o x9y(s0)
D (x| < Cenk fnw(t, )| + e p(smds|nDtW(t,§)|+|ﬂ§W§(t,E.~)|]

T X (s0) 4 _ & 3
< Ce k¥ Ine V& +ne -2 Yo dsg 7 _}

PO e VA 4mte V2

IN

O

@
=
x

[__n_ _fogy( ds ——— __n_
ne /2h(x) +ne 0 ps0) ~e V2 +nte /2h(x)

Ce (™ \/Zh xe 2\/2h<x> +1/2h(x)e —2J5 gp s0) ‘s ‘zﬁ?

<

2h( )te 2«/2h(><
< Ce*k(x)e_ZﬁgT(x),

_ xy(s0
2D (x )| < e K9 2Dewit,E)[e” S T &
< Ce‘k(x)nte7 \/21:1(X>
< Ce k¥ zh() e 2 gh(x)
< Ce k) 2\/2h(><
where C is a positive constant independent of . O

By above analysis, the weighted derivativesnD xwgl) and nanwgl) are uniformly bounded in

Q. However,
2 x gyl
Diwél):\/?{— S e 10,0 B %0 dsh()2+l}e‘k("),
Tl (22

where | is afunction that is uniformly bounded in Q. The derivative thus posses singularity at the
origin.

Inamanner similar to the construction of the wg ), we define astretched variable n= \[ , and

we define the function w(() satisyind the equation

(2) (2)

—Wek -+ (X bW + gy(x, D)Wz + a(x, b)w) =0,

with he boundary conditions
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Analogously, the weighted derivatives nDXw0 andn an(() ) are uniformly bounded in Q. How-

ever, the derivative Diw(() ) posses singularity at the point x =0, y = b. We also definethe functions
Rgl’z) by therelation

R(()l,Z) _ L[W(()l’z)].
Then
R = —enf]
+V@{mm%;mmwg+gmwSwwwwﬁ+qmqgmmwg}
and
= )
+E { p(va)\;ép(X,b) Wg() _ g(x,y)fgyéxyb)(yfb) W%) + q(x,y)\;éq(xyb) W(()Z) }

According to the hypotheses (C2), (C3), and (C4), we obtain the estimate

Ry = 0(ve)

valid uniformly in Q, with the exception of small fixed neighborhood of the corner points x = 0,
y=0andx=0,y=bh. Theestimateisvalidin, say, d < x<a,0<y< b, whered isasmall fixed
positive number. However, we shall need estimate valid in a more extended region G, defined by
¥ <x<a,0<y<b,where0 < a < 1. Theestimate followsfrom analysis of corner singularities
that are present in R(()LZ). Using the inequality

£2
&1,%<L
(4t)2

valid uniformly in0 < x < a, 0 <y < b, we find the estimate
RSLZ) — O(Emin(%7l—a))
in G. We write
u=\o +ng) -l-W(()Z) +Z.
There remains then to be solved the following problem:

_eAZ + pzx+gzy+ qZ = eAvo— R —R?,
z(0y) =
Z(ay) = vo<ay> wp' (2, %) —wg (a, 22),
Z(x,0) = _Wo(ab)a

Z(x,b) = —wg’ (x, ).

)
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Wefindthat Z isnot very small near the boundary x = a. For this, weintroduce a stretched variable
X = 2X_ Note that

1 1
LZ(X,y) = —EZ)(X —EZyy— g pZX + gZy+qZ

We make a formal expansion of the equation LZ = 0 into powers of €, and equate to zero the
coefficients of powers of €, to define Zg, 23,2, by

Zoxx + p(a,y)Zox = O,
Zixx +p(@,y)Zix = px(a,y)XZox +9(a,Y)Zoy +d(a,y) Zo,
Zoxx + P(@,Y)Zox = —Zoy— 3Px(@Y)X?Zox + Px(a,Y)XZ1x — 9x(a,y) X Zoy
+0(a,y)Zay +d(a,y)Z1 — 9x(a,Y) X Zo.
We use the boundary conditions
Z0(0,y) = w(y), Z1(0,y) =0, Z»(0,y) =0,
Zi(X,y) >0 as X — oo, i=0,12

where y(y) = —vo(a,y) — w(()l) (a, %) - w(()z) (a, b;\/gy ). For the function

z (Xaya 8) = ZO(X,y,S) + 821(X,y, 8) + SZZZ(XJyJ 8)7

we then have
L(Z") = Ry;
R> is given by
R = —€2Zyyy— 370+ 2e2pox(a1,Y) X3Zox — 3€2pu(@2, y)X2Z1x

+e2px(a3,Y) X Zox + 3% (24, Y) X2Zoy — €20(8s5,Y) X Z1y + £20(X, Y) Z2y
+€2q(X,Y) Z2 + 3€20x(a6, ) X?Zo — £20x(a7, Y) X Z1.

Here a1, ap, az, etc. come from Taylor Theorem. The explicit calculation of the functions Z; and
Z, is complicated, but these functions can be shown to be of the following general form:

Zo(X,y,e) = w(y)e PEYX,

2ixye) = {0+ ra)XIuy) +raX Gy b P

Za0xye) = | (80X + s+ + )X )
+[85(y)><3+86(y)x2+s7(y)X]diyw+se(y)xg_y§\,,}ep(a,y>x,

where the functions s1,$,r1,€etc. are al uniformly bounded and as are their derivatives with
respect toy. Now we have

_ ] 7ln ]
dynw_O(a 2™ for n=0,1,2,3,4.
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It follows that

Returning to the boundary value problem (1.1), (1.1a), we summarize our results by writing

b— _
u(x,y,€) = vo(x,y) + Wél) (X, %) + W(()Z) (X, TEy) + Z*(a—gx,y, €) +o(x,Y,€). (3.9

The remainder term ¢ is a solution of the equation
L(o) =R
Risgiven by
R=—eAvo— R —R? —R,.
In the subregion G, we have
R— O(Smin(%,l—oc))'

We proceed to analyse the boundary conditionsfor the function ¢. These are

¢(O;y) = _Z*(gayas)a

o(ay) =0,

q)(X,O) = _W(()Z) (Xa %) —Z*(%,O,S),
o(xb) = —we) (x, B) - 2/ (2 b.g)

»=0(ve) on T. (3.9)

4 Asymtotic Representation of the Solution

In order to estimate the remainder term ¢(x, Y, €) in (3.4), we need the following result, which
is a consequence of the maximum principle.
Theorem 4.1 If ®(x,y,€) isthe solution of the boundary value problem

L[®] = h(xy,e),
valid in Q with

(D(X,y,e)|r = ‘P(X;Y;SNF
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along the boundary T" of Q, and if
h(x,y,e) = O(e") in Q, u>0,
and
Y(x,y,e) = O(e¥) along T, v >0,
then at most

D(x,y,€) = O<£mi"(“7v)> in Q.

L et us define the subregion G*:
(xy)eG" if 0<x<e* 0<y<b O<a<l
It follows from Theorem 2.1 that
u(x,y,e) = 0(e*) in G*.

Moreover, using in eguation (3.4) the explicit definition of the function v, wél’z), and Z*, one
finds without difficult that

¢ =0(e%) in G". 4.1
We next consider the subregion G. In this region we have the equation
L(9) = R= O(emN(z:1-%)), 4.2)

Moreover, result (4.1) also holds at the boundary x = € of G. Together with the result (3.5) we
obtain

6= 0™ (%) on JG. (4.3)
To the boundary value problem (4.2), (4.3), we apply Theorem 4.1, it follows that
6 = O(eMNz*1=)) in G. (4.4)
Combining results (4.1) and (4.4), we obtain
¢ = O(eMN(z%1-0)y in Q.
Hence the optimal choiceof aisa = % and then

0=0(v/&) in Q.
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Finally we analyze more closely the boundary layer function Z appearing in that expansion. From
the explicit formulas one easily finds

2 =y ep|-play) 22| + O(ve)

Hence we have established the following theorem:

Theorem 4.2 If the function u satisfies the boundary value problem (1.1), (1.1a), then uniformly
in Q, including all four corner points,

u¢.8) =vo0e) + 0 ¢ ) + 0% ) 4wty exp | - pla) 2 + 0(ve)
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