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Abstract

We discuss the logarithmic operators in Toda field theory.
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1 Introduction

Two dimensional conformal field theories(CFT) have been the subject of intense interest
since the publication of the seminal paper of Belavin, Polyakov and Zamolodichikov.[1]
Their work form the basis of string theory and have many important applications to
statistical mechanics and condensed matter physics. Despite being extraordinary com-
prehensive, the possibility that correlation functions may contain logarithms was not
considered at all in that paper. In 1993 Gurarie [2] introduced the logarithmic oper-
ators preserving conformal invariance that produce the logarithms in the correlation
functions. These logarithms have been found in the models such as the Wess-Zumino-
Witten (WZW) model on the supergroup GL(1, 1)[3], non-minimal cp,q models [2,4,5],
the WZW models at level 0 [6,7,8] and many others. However, the logarithmic confor-
mal field theories remain difficult to work with, and are not yet classified in the similar
way as the standard CFT.

Logarithmic operators are a straightforward generalization of the primary opera-
tors.[9,10,11] The so-called primary states created by the primary operators are anni-
hilated by all the Virasoro generators Ln with n > 0 and are eigenstates of the of the
Virasoro generator L0,

L0|A〉 = h|A〉 (1)

Logarithmic operators are a generalization of that to non-diagonalizable matrices. The
logarithmic states are also annihilated by Ln with n > 0, but form a Jordan block with
respect to L0

L0|C〉 = h|C〉 (2)

L0|D〉 = h|D〉+ |C〉, (3)

or equivalently

L0

( |C〉
|D〉

)
=

(
h 0
1 h

) ( |C〉
|D〉

)
. (4)

L0 can be interpreted as the Hamiltonian in standard CFT. But it can be seen in (2), (3)
that L0 is not hermitian since L†

0 �= L0. Therefore, the logarithmic states cannot be
unitary.

Let us review how logarithmic operators appear in logarithmic CFT and, firstly, cal-
culate two-point correlation functions by conformal invariance. Under an infinitesimal
conformal transformation, z → z + ε(z), a primary operator transforms as [12]

δC(z) = ε(z)
∂C(z)

∂z
+ h

∂ε(z)

∂z
C(z), (5)

where h is the anomalous dimension. Its logarithmic partner D(z) transforms in a
different way

δD(z) = ε(z)
∂D(z)

∂z
+

∂ε(z)

∂z
(hD(z) + C(z)). (6)
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The two-point correlation function of a primary operator A(z) is invariant under the
translation with ε(z) = ε = constant, dilatation with ε(z) = εz and special conformal
transformation (SCT) with ε(z) = εz2, fix the only correlation function up to a constant

〈A(z)A(w)〉 = b

(z − w)2h
, (7)

where b is an arbitrary constant. This correlation function will satisfy the differential
equations,

(∂z + ∂w)〈A(z)A(w)〉 = 0,

(∂z + ∂w + 2h)〈A(z)A(w)〉 = 0,

(w2∂z + w2∂z2 + 2h(z + w))〈A(z)A(w)〉 = 0. (8)

As for the correlation function 〈C(z)C(w)〉, it will satisfy the same set of equations
(8) as 〈A(z)A(w)〉. The correlation functions involving D(z) should satisfy slightly
different equations,⎧⎨

⎩
(∂z + ∂w)〈D(z)C(w)〉 = 0,

(∂z + ∂w + 2h)〈D(z)C(w)〉+ 〈C(z)C(w)〉 = 0,
(z2∂z + w2∂w + 2h(z + w))〈D(z)C(w)〉+ 2z〈C(z)C(w)〉 = 0,

. (9)

⎧⎨
⎩

(∂z + ∂w)〈C(z)D(w)〉 = 0,
(∂z + ∂w + 2h)〈C(z)D(w)〉+ 〈C(z)C(w)〉 = 0,

(z2∂z + w2∂w + 2h(z + w))〈C(z)D(w)〉+ 2w〈C(z)C(w)〉 = 0,
. (10)

⎧⎨
⎩

(∂z + ∂w)〈D(z)D(w)〉 = 0,
(∂z + ∂w + 2h)〈D(z)D(w)〉+ 〈C(z)D(w)〉+ 〈D(z)C(w)〉 = 0,

(z2∂z + w2∂w + 2h(z + w))〈D(z)D(w)〉+ 2z〈C(z)D(w)〉+ 2w〈D(z)C(w)〉 = 0,
.

(11)
The only solution of the above equations is

〈C(z)C(w)〉 = 0,

〈D(z)C(w)〉 = 〈C(z)D(w)〉 = b

(z − w)2h
,

〈D(z)D(w)〉 = −2b
ln(z − w)

(z − w)2h
. (12)

It can be seen that the operator D(z) justifies its name of a logarithmic operator, as
its two- point correlation function contains a logarithm.

In this paper we plan to discuss the logarithmic operators in the Toda field theory,
which can be taken as a generalization of the Liouville conformal field theory. So let us
review the Liouville conformal field theory first.
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2 Logarithmic Operators in Liouville Conformal Field

Theory

The Liouville conformal field theory was first introduced by Polyakov [13], aiming to
calculate the path integral measure coming from the interaction between closed bosonic
strings. The action arising from the calculation is given by

S =
1

4π

∫
d2x

√
g [gαβ∂αφ∂βφ+QRφ+ 4πμe2bφ]. (13)

The first term of the integrand represents the kinetic free scalar field, the second term
is the curvature coupling term and the third term is the Liouville exponential potential
term. Q is the coupling parameter, R is the Ricci scalar curvature, and μ is the scale
parameter. As the Gauss-Bonnet theorem is used, one can regard the coupling of the
curvature with the field as adding a background charge of −Q at infinite. The central
charge of the action (13) is [14]

c = 1 + 6Q2 (14)

and the energy-momentum stress tensor is

T (z) = Q∂2φ− ∂φ∂φ, (15)

where the complex coordinates z can be written in terms of our two-dimensional Eu-
clidean space coordinates as z = x1 + ix2, ∂ = ∂/∂z. Though adding the Liouville
exponential potential term, the action (13) remain conformal. This is true if and only
if

Q = b+
1

b
. (16)

All the important parameters for the Liouville CFT remain the same after adding the
Liouville exponential. In this theory, the primary fields are vertex operators of the form

Vα =: e2αφ(z) : (17)

with the conformal dimensions

Δα = α(Q− α). (18)

The primary fields have the usual operator product expansion with the stress tensor

T (z)Vα(0) =
Δα

z2
Vα(0) +

1

z
∂Vα(0) + ... (19)

For every value of α, there are two operator with the same dimension Δα given by (18),
Vα and VQ−α. When

α =
Q

2
, (20)
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there are also two primary operators with the same dimension. The second one is

∂

∂α
Vα |α=Q

2
= 2φ(z)eQφ(z) (21)

This is called the puncture operator in the Liouville CFT. We might expect ∂
∂α
Vα |α=Q

2
is

a logarithmic operator, but this is not true. To see this clearly, we differentiate Eq.(19)
with respect to α, which gives

T (z)

(
∂

∂α
Vα(0)

)
=

∂Δα

∂α

1

z2
Vα(0) +

Δα

z2

(
∂

∂α
Vα(0)

)
+

1

z
∂

(
∂

∂α
Vα(0)

)
+ ... (22)

The first term of the right-hand side of Eq.(22) vanishes, since

∂Δα

∂α
|α=Q

2
= Q− 2α = 0. (23)

There is one way to obtain correctly the second primary operator, which is the loga-
rithmic operator, when α = Q/2. Instead of Eq.(22), one find

T (z)Dα(0) =
Δα

z2
Dα(0) +

1

z2
Vα(0) +

1

z
∂Dα(0) + ... (24)

and the logarithmic operator Dα can be written as

Dα =

(
∂Δα

∂α

)−1
∂

∂α
Vα. (25)

Now let us proceed to calculate the two-point correlation functions. Under an
infinitesimal conformal transformation, z → z + ε(z)

δVα(z) = ε(z) ∂Vα(z) + Δα ∂ε(z)Vα(z), (26)

δDα(z) = ε(z)∂Dα(z) + ∂ε(z)(ΔαDα(z) + Vα(z)). (27)

We can obtain the similar correlation function

〈Dα(z)DQ−α(w)〉 = −2b
ln(z − w)

(z − w)2Δα
. (28)

involving a logarithm.

3 Logarithmic Operators in Conformal Toda Field

Theory

Conformal Toda field theory is much more complicated than the Liouville field theory.
This theory provided an important example of CFT with high spin symmetry. The
Lagrangian of the sl(n) conformal Toda field theory [15] has the form

L =
1

4π
(∂αφ)

2 + μ
n−1∑
k=1

e2b(ek,φ) (29)
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where φ is the two-dimensional (n − 1)-component scalar field that φ = (φ1...φn−1), b
is the dimensionless coupling constant and (ek, φ) denotes the scalar product, in which
vectors ek are the simple roots of the Lie algebra sl(n) with the Cartan matrix of the
scalar products Kij = (ei, ej)

Kij =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · · · · 0
−1 2 −1 · · · · · · 0
0 −1 2 · · · · · · · · ·
· · · · · · · · · · · · −1 0
0 · · · · · · −1 2 −1
0 · · · · · · 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(30)

Total normalization of the Lagrangian given in Eq.(29) is chosen in such a way that

φi(z, z̄)φj(0, 0) = −δij ln|z|2 + ... at z → 0. (31)

The action of the Toda field theory on a surface with metric gμν is

SToda =
1

4π

∫
d2x

√
g [gαβ(∂αφ, ∂βφ) +R(Q, φ) + 4πμ

n−1∑
k=1

eb(ek,φ)], (32)

where R is the scalar curvature of the background metric. If the background charge Q
is related with the parameter b as

Q =

(
b+

1

b

)
ρ

2
(33)

with ρ being a Weyl vector, half of the sum of all positive roots, then the theory based
on Eq.(32) is conformally invariant. The central charge of the action (32) is

c = n− 1 + 3Q2 = (n− 1)(1 + n(n+ 1)(b+ b−1)2) (34)

and the energy-momentum stress tensor is

T (z) = (Q, ∂2φ)− (∂φ)2, (35)

The primary operators of this theory are vertex operators parameterized by a (n− 1)-
component vector parameter α

Vα = e2(α,φ) (36)

with the conformal dimensions

Δα = (α,Q− α). (37)

The primary fields have the usual operator product expansion with the stress tensor

T (z)Vα(0) =
Δα

z2
Vα(0) +

1

z
∂Vα(0) + ... (38)
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Now, we know that the logarithmic operator Dα can be written as

Dα =

((
∂Δα

∂α

)−1

,
∂

∂α
Vα

)
. (39)

and

T (z)Dα(0) =
Δα

z2
Dα(0) +

1

z2
Vα(0) +

1

z
∂Dα(0) + ... (40)

With the same procedure we also obtain the correlation function

〈Dα(z)DQ−α(0)〉 = −2b
lnz

z2Δα
. (41)

which contains a logarithm.

4 Discussions

As shown in Eq.(39), we find that the logarithmic operators exist in the conformal
Toda field theory. Although it is similar to that of Liouville theory, but rarely referred
in the literature. Conformal Toda field theory is notorious for its complexity and high
spin Wn symmetry structures, nevertheless, this theory may be regarded as an arena
for finding some new properties about the logarithmic CFT.
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