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Abstract

We calculate the covariant entropy bound for the Friedmann-Robertson-Walker(FRW)
universe in higher-dimensional space-time. Let a(t) and b(t) represent the scale
factor of the four-dimensional space-time and the extra dimensions respectively.
Assuming b(t) = κan(t)(n < 0), then some constraints are obtained.
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1 Introduction

Whenever a system suffer a gravitational collapse, the total entropy must be defined
as the sum of the matter-entropy Sm plus the entropy of the black hole SBH , i.e.
S = Sm + SBH . Hawking [1] showed that the black hole entropy is given by

SBH =
A

4G
(1)

where A is the area of the event horizon of the black hole. For any weakly gravitating
matter system in asymptotically flat space in four-dimensional space-time, Bekenstein
(1981) [2] proposed the entropy bound

Sm ≤ 2πER, (2)

where E is the total mass-energy of the matter system and R is the radius of the
smallest sphere that fits around the matter system. Note that the bound from above
in the inequality (2) does not contain the Newton’s constant G at all. This entropy
bound is important because it is an attempt to set limits on the entropy of the system
that is characterized by physical parameters such as energy and the size of the system.

Another kind of the entropy bound was proposed by Susskind in 1995 [3]. The
maximum entropy of a system that can be enclosed by a spherical surface of the area
A is given by

S ≤ A

4G
. (3)

This is known as the spherical entropy bound. It can also be extended to a much more
general bound called the space-like entropy bound.[4] For a compact portion of equal
time spatial hypersurface in space-time with volume V and boundary B of area A(B),
then the total entropy inside the boundary is bounded by

S(V ) ≤ A(B)

4G
. (4)

Though this bound works in many systems, counterexamples can be found where it
does not apply, for example, in cosmological scenarios or for strongly gravitational
system[4]. The failure of the space-like entropy bound lead Bousso to propose a more
suitable generalization which is known as the covariant entropy bound.[5]

On the other hand, there is a principle that change our thinking radically about the
counting of degrees of freedom of physical system. How many degrees of freedom are
there in which the entropy or information content is stored at the most fundamental
levels? ’t Hooft (1993)[6] and Susskind (1995)[3] presented the so-called holographic
principle which answers this question in terms of the area of surfaces in space-time.
The holographic principle could be possibly formulated as follows:

The full physical description of some given region of volume V , in an D-dimensional
universe, with (D − 1)-dimensional boundary B ≡ ∂V , can be reflected in processes
taken place in B.
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From a fundamental point of view, the entropy bounds are likely to be a more or
less straightforward consequence of this principle. Despite in the absence of a well
formulated holographic principle, entropy bounds can be extremely useful as heuristic
tools for the task of clarifying the apparent contradictions between Quantum Mechanics
and General Relativity.

In order to solve the difficulties encountered in the space-like entropy bound, Bousso
proposed the covariant entropy bound which can be stated as follows:

Let A be the area of a connected (D − 2)-dimensional spatial surface B contained
in the D-dimensional space-time M . A (D − 1)-dimensional hypersurface L is called a
light-sheet of B if it is generated by surface orthogonal null geodesics with nonpositive
expansion. Then the total entropy S, contained on L, satisfy the inequality

S(L) ≤ A(B)

4G
. (5)

Furthermore, there is also a stronger version of the covariant entropy bound which is
proposed in [7] known as the generalized covariant entropy bound. In this version the
light rays in L are allowed to stop before they reach the caustic and in this way they
define a new surface B′ of the area A(B′). Then we have

S(L) ≤ A(B)− A(B′)
4G

. (6)

Eq.(6) reduces to Eq.(5) for the special case that A(B′) = 0.
However, A. Masoumi and S.D. Mathur [8] proposed a possible violation of the

covariant entropy bound. They suggested that the entropy density at high energy

density ρ should be given by the expression s = K
√
ρ/G. On the other hand the

covariant entropy bound requires that the entropy on a light sheet be bounded by
A/4G, where A is the area of the boundary of the sheet. They found that a suitably
chosen cosmological geometry, the above expression for s violates the covariant entropy
bound.

In this paper we calculate the covariant entropy bound for the higher-dimensional
spatially flat Friedmann-Robertson-Walker(FRW) universe and find that some con-
straints should exist.

2 Higher-Dimensional FRW Universe

The metric of the spatially flat Friedmann-Robertson-Walker universe in (4+m)-dimensional
space-time can be expressed as

ds2 = −dt2 + a2(t)[ dr2 + r2(dθ2 + sin2θdφ2)] + b2(t)
m∑
j=1

dy2j (7)
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where a(t) and b(t) represent the scale factors of the four-dimensional space-time and
the extra dimensions respectively. Eq.(7) can be rewritten as

ds2 = −dt2 + a2(t)
3∑

i=1

dx2
i + b2(t)

m∑
j=1

dy2j , (8)

so that the directions t, xi, yj are all orthogonal to each other. The light sheet we use
will be confined to the interval

t0 −Δt ≤ t ≤ t0 (9)

where we will take the limit of small Δt. The metric is subject to Einstein’s equations,
which are second order equations for the metric components. We can choose the a(t),
b(t), ȧ(t), ḃ(t) at time t0 as:

a(t0) ≡ a0, b(t0) ≡ b0,
ȧ(t0)

a(t0)
≡ γ0,

ḃ(t0)

b(t0)
≡ β0 (10)

which subject only to the constraint set by the Einstein equation Gt
t = 8πGT t

t :

−1

2

(
3
ȧ

a
+m

ḃ

b

)2

+
1

2

(
3
ȧ2

a2
+m

ḃ2

b2

)
= −8πGρ. (11)

This constraint gives

−1

2
(3γ0 +mβ0)

2 +
1

2

(
3γ2

0 +mβ2
0

)
= −8πGρ0. (12)

where ρ0 = ρ(t0). The Gk
k (there is no sum over k ) equations for the space directions

we have

ä

a
+

ȧ

a

(
3
ȧ

a
+m

ḃ

b

)
− ȧ2

a2

−1

2

⎡
⎣2

(
3
ä

a
+m

b̈

b

)
+

(
3
ȧ

a
+m

ḃ

b

)2

−
(
3
ȧ2

a2
+m

ḃ2

b2

)⎤
⎦

= −8πGT k
k (k = 1, 2, 3), (13)

and

b̈

b
+

ḃ

b

(
3
ȧ

a
+m

ḃ

b

)
− ḃ2

b2

−1

2

⎡
⎣2

(
3
ä

a
+m

b̈

b

)
+

(
3
ȧ

a
+m

ḃ

b

)2

−
(
3
ȧ2

a2
+m

ḃ2

b2

)⎤
⎦

= −8πGT k
k (k = 4, 5...3 +m). (14)
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Assuming that the evolution of the full cosmology is a perfect fluid with p = ρ, we can
solve Eq.(13) and (14),and yields finite values of the ä,b̈. Thus in the interval given by
Eq.(9) we get

a(t) ≈ a0 [1 + γ0 (t− t0)] (15)

b(t) ≈ b0 [1 + β0 (t− t0)] (16)

in which we will take
γ0 > 0, (17)

so that the slice t0 −Δt ≤ t ≤ t0 represents a segment of an expanding cosmology.

3 The Covariant Entropy Bound

Now we are in the (4+m)-dimensional space-time and consider a (2+m)-dimensional
space-like hypersurface B. This hypersurface may be closed (i.e.without boundary) or
it may be open (i.e. with boundary). Let A be the area of B. Let the B be a cuboid
in the direction x2, x3, y1...ym, spanning the coordinate ranges

0 ≤ xi ≤ Li, 0 ≤ yj ≤ L′
j. (18)

All points on this cuboid are at a fixed value of time t and space coordinate x1, i.e.

t = t0, x1 = x1
0. (19)

Our metric now is given by Eq.(8). The area of this hypersurface B is

A =
3∏

i=2

m∏
j=1

LiL
′
ja(t0)b(t0) =

3∏
i=2

m∏
j=1

LiL
′
ja0b0. (20)

At each point of the hypersurface B we look for a null geodesic leaving the hypersurface,
in a direction that is orthogonal to the hypersurface. Each geodesic remains at a fixed
value of the coordinates x2, x3, y1...ym. The change of x1 is found by requiring ds = 0
in the metric given by Eq.(8), i.e.

dx1

dt
=

1

a(t)
. (21)

We require that the set of null geodesics constructed in this way will be nondiverging
as we move away from the hypersurface B. In other words, suppose we consider a small
area element dA on B. A null geodesic will start from a point (x2

0, x
3
0, y

1
0...y

m
0 ) on B.

We follow these geodesics for an affine distance λ, the transverse area spanned by the
geodesics will have a value dA(λ) and require that

dA(λ)

dλ
≤ 0. (22)
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The geodesic starts with a tangent vector which has with nonzero components

dx1

dλ
< 0,

dt

dλ
< 0, (23)

so it heads to the past, in the direction of decreasing x1. The area dA(t) decreasing
along the geodesics heading to the past is equivalent to

dA

dt
=

d

dt

⎛
⎝ 3∏

i=2

m∏
j=1

LiL
′
ja(t0)b(t0)

⎞
⎠ =

⎛
⎝ 3∏

i=2

m∏
j=1

LiL
′
ja0b0

⎞
⎠ (2γ0 +mβ0) > 0 (24)

which is a result deriving from Eq.(15) and (16).
We follow the null geodesics described above up to the point where they reach a

caustic; i.e.the point where the separation of neighboring geodesics goes to zero. The
surface spanned by the null rays emanating from B, followed up to any point before
meeting a caustic, defines a light sheet. We now consider the entropy Ssheet on this
light sheet. This can also be defined by the entropy that crosses the light sheet from
one side to the other.

We compute the entropy passing through the light sheet as follows. On the spatial
slice at time t, consider the slice of space given by

x1
0 −Δx1 ≤ x1 ≤ x1

0, (25)

0 ≤ xi ≤ Li (i = 2, 3), 0 ≤ yj ≤ L′
j (j = 1, 2...m) (26)

where

Δx1 =
Δt

a0
(27)

The entropy passing through our light sheet is equal to the entropy present on this slice
of space. The proper volume of this slice is

ΔV = a0Δx1

⎛
⎝ 3∏

i=2

m∏
j=1

LiL
′
ja0b0

⎞
⎠ = Δt

⎛
⎝ 3∏

i=2

m∏
j=1

LiL
′
ja0b0

⎞
⎠ . (28)

The entropy density on the slice is

s = K

√
ρ0
G

(29)

where we have used the same entropy density in [8] is used. K is a constant of order of
unity. Thus the entropy passing through our light sheet is

Ssheet = sΔV = K

√
ρ0
G
Δt

⎛
⎝ 3∏

i=2

m∏
j=1

LiL
′
ja0b0

⎞
⎠ . (30)
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The generalized version of the covariant entropy bound is proposed in [7]. We will use
the form

Ssheet ≤ Sbound =
A− A′

4G
. (31)

where A′ < A because the light rays are converge along their paths. The area A is
given by Eq.(20) while the area A′ is the area of the surface at the lower end of the
light sheet. We have

A′ =
3∏

i=2

m∏
j=1

LiL
′
ja(t0 −Δt)b(t0 −Δt)

≈
3∏

i=2

m∏
j=1

LiL
′
ja0b0(1− γ0Δt)(1− β0Δt)

≈
⎛
⎝ 3∏

i=2

m∏
j=1

LiL
′
ja0b0

⎞
⎠ (1−Δt(2γ0 +mβ0)) (32)

Then we get

Sbound =
A− A′

4G
=

(∏3
i=2

∏m
j=1 LiL

′
ja0b0

)
Δt(2γ0 +mβ0)

4G
. (33)

Thus we can find that
Ssheet

Sbound

≡ r =
4K

√
ρ0G

(2γ0 +mβ0)
. (34)

Substituting ρ0 from Eq.(12), we get

r =
K√
π

[
(3γ0 +mβ0)

2 − (3γ2
0 +mβ2

0)
] 1
2

(2γ0 +mβ0)
(35)

Similar to G. Sarma [9], we assume a relation between two scale factors a(t) and b(t),

b(t) = κan(t), n < 0, (36)

where κ and n are constant. In the work of G. Sarma [9], he considered the spatially
flat and isotropic universe in five-dimensional FRW metric, assumed the relation b(t) =
κan(t), and claimed that n must be less than zero and have a condition 0 > n > −3 for
accelerating universe. Substituting the relation given in Eq.(36) into (10),we will have

β0 = nγ0, (37)

and then

r =
K√
π

[6 + 6mn+ (m2 −m)n2]
1
2

(2 +mn)
, (38)
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where the relation given in Eq.(17), γ0 > 0, is used. If the generalized covariant entropy
bound holds true, r should be less than one, i.e.

1 ≥ r, (39)

Then it follows that

0 > n > − 2

m
, (40)

6 + 6mn+ (m2 −m)n2 ≥ 0. (41)

In the five-dimensional case, m = 1, we get the constraints

0 > n > −1 (42)

and
K <

√
π(2 + n)/(6 + 6n)

1
2 . (43)

4 Concluding Remarks

We have calculated the generalized covariant entropy bound for higher-dimensional
FRW universe and obtained three constraints listed in Eq. (39) to (41).This is consistent
with the work of G. Sarma [9]. We do not claim that there are some violations of the
covariant entropy bound in higher-dimensional FRW universe. However, if the covariant
entropy bound holds true, nature may choose the right one among all possibilities.
The covariant entropy bound may give us some informations in the higher-dimensional
space-time.
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