
Tunghai Science Vol. 4: 25−46 25

July, 2002

An Introduction to a PC Cluster with Diskless
Slave Nodes

Chao-Tung Yang* Yao-Chung Chang*

Abstract

A cluster is a collection of independent and cheap machines, used together as a supercomputer to
provide a solution. In traditional scalable computing clusters, there is related high powered Intel or
AMD based PC’s associated with several gigabytes of hard disk space spread around. As far as a cluster
administrator is concerned, the installer may have to install an operating system and related software for
each cluster node. Every node (excluding the Server) is equipped without any hard disk and is booted
from the network. Since it has booted successfully, it works as same as a fully equipped one. We will
explain how to set up a diskless cluster for computing purpose. In this paper, a SMP-based PC cluster
consists of one master node and eight diskless slave nodes (16 processors), is proposed and built. The
system architecture and benchmark performances of the cluster are also presented in this paper.

Keywords: PC cluster, parallel computing, SMP, message passing

1. Introduction

Extraordinary technological improvements over the past few years in areas such as

microprocessors, memory, buses, networks, and software have made it possible to assemble

groups of inexpensive personal computers and/or workstations into a cost effective system that

functions in concert and posses tremendous processing power. Cluster computing is not new, but

in company with other technical capabilities, particularly in the area of networking, this class of

machines is becoming a high-performance platform for parallel and distributed applications [1, 2,

8, 9].

In traditional scalable computing clusters, there is related high powered Intel or AMD based

PC’s associated with several gigabytes of hard disk space spread around. As far as a cluster

* Department of Computer Sciences & Information Engineering, Tunghai University, Taichung 407, TAIWAN

26

administrator is concerned, the installer may have to install an operating system and related

software for each cluster node. Every node (excluding the Server) is equipped without any hard

disk and is booted from the network. Since it has booted successfully, it works as same as a fully

equipped one. Although, users can store their own data on the local hard drives in this way,

backups and other software installation are rarely (even never) performed for computing purpose.

As a result, we can see drawbacks that much storage space is wasted and we have to take care of

each node in front of the console if something is going wrong. Does it really make sense to have

a full computer for each node? It’s not necessary. With the development of NOW (Networks of

workstations), it has been applied to computing clusters also. Every node (excluding the Server)

is equipped without any hard disk and is booted from the network. Since it has booted

successfully, it works as same as a fully equipped one. We will explain how to set up a diskless

cluster for computing purpose. We will explain how to set up a diskless cluster for computing

purpose.

Motivations for the use of diskless Linux within the Department of CSIE are listed as

bellows:

• To manage a large number of workstations in a consistent and efficient manner.

Management includes software updates bug fixes, system configuration, file system

integrity, security etc.

• To control a group of computers form a central location. These computers could be

embedded processors or large numbers of computers ganged together to solve compute

intensive problems.

• Lab computers are subject to a wide range of abuses that cause the system disk to become

corrupted. This could be as a result of powering off or resetting the computer without

properly shutting down the computer.

• Upgrading system software without worrying about whether the machine is turned on or

not.

• Improved system security through the use of read only file systems and verification

programs such as tripwire that ensure the integrity of the image that is presented to the

user.

The use of loosely coupled, powerful and low-cost commodity components (PCs or

workstations, typically), especially without any hard disk drive, connected by high-speed

27

networks has resulted in the widespread usage of a technology popularly called diskless cluster.

Strictly speaking, it consists of one or more servers which provide not only bootstrap service but

also related network services (such as DHCP, NIS, NFS servers, and etc) and many clients with

no hard disk drive requesting for booting from the network. The availability of such clusters

made maintain as easy as possible, and also reduced the waste in storage space. The diskless

cluster differs from the traditional one in that a network is used to provide not only

inter-processor communications but also a medium for booting and transmission for a live file

system. Thus, each diskless node before booting can boot through a floppy disk or a NIC’s boot

ROM with a small bootstrap program and even with a NIC’s PXE, which sends a broadcast

packet to a DHCP server and is then assigned an IP address. After each node has been assigned a

valid IP address, it sends a request to the TFTP server for getting the boot image, referred to the

Linux Kernel, through TCP/IP protocol and starts the booting process. During the booting

process, all the necessary system files are transmitted through the network. After the remote file

system is mounted as root file system (NFS_ROOT), and the system initialization is done, the

node is ready to work.

In this paper, a SMP-based PC cluster consists of one master node and with eight diskless

slave nodes (16 processors), is proposed and built. In this paper, the system architecture and

benchmark performances of the cluster are presented. In order to measure the performance of our

cluster, the parallel ray-tracing problem is illustrated and the experimental result is demonstrated

on our Linux SMPs cluster. The experimental results show that the highest speedup is 15.22 for

PVMPOV [5, 7], when the total numbers of processor is 16 on SMPs cluster. Also, the LU of

NPB benchmark is used to demonstrate the performance of our testbed by using LAM/MPI

library [4]. The experimental result shows that our cluster can obtain speedup 9.07 when the total

numbers of processors used is 16. The results of this study will make theoretical and technical

contributions to the design of a high-performance computing system on a Linux SMP Clusters

with diskless slave nodes.

2. System Setup

2.1 Description of hardware and system software

28

Our SMP cluster is a low cost Beowulf-type class supercomputer that utilizes

multi-computer architecture for parallel computations. The clusters as shown in consists of nine

PC-based symmetric multiprocessors (SMP) connected by one 24-port 100Mbps Ethernet

switches with Fast Ethernet interface. Its system architecture is shown in. There are one server

node and eight computing nodes. The server node has two Intel Pentium-III 690MHz (550

over-clock, FSB 138MHz) processors and 256MBytes of shared local memory. Each Pentium-III

has 32K on-chip instruction and data caches (L1 cache), a 256K on-chip four-way second-level

cache with full speed of CPU. The other eight nodes are Celeron-based SMP machines. Each

Celeron also has 32K on-chip instruction and data caches (L1 cache), a 128K on-chip four-way

second-level cache with full speed of CPU. Each individual processor is rated at 495MHz, and

the system bus has a clock rate of 110 MHz.

Figure 1: Snapshot

Linux is a robust, free and reliable POSIX compliant operating system. Several companies

have built businesses from packaging Linux software into organized distributions; RedHat is an

example of such a company. Linux provides the features typically found in standard UNIX such

as multi-user access, pre-emptive multi-tasking, demand-paged virtual memory and SMP support.

29

In addition to the Linux kernel, a large amount of application and system software and tools are

also freely available. This makes Linux the preferred operating system for clusters. The idea of

the Linux cluster is to maximize the performance-to-cost ratio of computing by using low-cost

commodity components and free-source Linux and GNU software to assemble a parallel and

distributed computing system. Software support includes the standard Linux/GNU environment,

including compilers, debuggers, editors, and standard numerical libraries. Coordination and

communication among the processing nodes is an key requirement of parallel-processing clusters.

In order to accommodate this coordination, developers have created software to carry out the

coordination and hardware to send and receive the coordinating messages. Messaging

architectures such as MPI or Message Passing Interface, and PVM or Parallel Virtual Machine,

allow the programmer to ensure that control and data messages take place as needed during

operation.

SMP
(Celeron)

SMP
(Celeron)

SD

Com3
SUPER
STACK 

SuperStack II
Dual Speed Hub

Status

1 2 3 4 5 6 7 8 9 10 11 12

Segment

MDI MDI-X

SMP
File Sever
(P-III 667)

3Com 16591

uplink

dual2 dual3 dual4 dual5 dual6 dual7 dual8 dual9 dual1

SMP
(Celeron)

SMP
(Celeron)

SMP
(Celeron)

SMP
(Celeron)

SMP
(Celeron)

SMP
(Celeron)System Bus

Share Memory
192MB

Network
Device

Storage
Device

PCI Bus

2-node
SMP

300a oc 495300a oc 495

Figure 2: System overview

PVM, or Parallel Virtual Machine, started out as a project at the Oak Ridge National

Laboratory and was developed further at the University of Tennessee. PVM is a complete

distributed computing system, allowing programs to span several machines across a network.

PVM utilizes a Message Passing model that allows developers to distribute programs across a

variety of machine architectures and across several data formats. PVM essentially collects the

network's workstations into a single virtual machine. PVM allows a network of heterogeneous

computers to be used as a single computational resource called the parallel virtual machine. As

we have seen, PVM is a very flexible parallel processing environment. It therefore supports

almost all models of parallel programming, including the commonly used all-peers and

30

master-slave paradigms.

MPI is a message-passing application programmer interface with protocol and semantic

specifications for how its features must behave in any implementation (such as a message

buffering and message delivery progress requirement). MPI includes point-to-point message

passing and collective (global) operations. These are all scoped to a user-specified group of

processes. MPI provides a substantial set of libraries for the writing, debugging, and

performance testing of distributed programs. Our system currently uses LAM/MPI, a portable

implementation of the MPI standard developed cooperatively by Notre Dame University. LAM

(Local Area Multicomputer) is an MPI programming environment and development system and

includes a visualization tool that allows a user to examine the state of the machine allocated to

their job as well as provides a means of studying message flows between nodes.

2.2 Set up Hardware

Here are the main steps in setting up the hardware:

1. Moved the machines from various labs in the campus to the high-performance computing Lab.,

mounted them on the rack, names and numbered them.

2. Setup the network switches and connected each port to Fast Ethernet adapters of the machines

one by one.

3. A single monitor, keyboard and mouse were connected to one of the machines, referred to

server node (dual1), that are responsible for bootstrap service and related network services with

a hard disk drive (30GB) and a high-end graphics card.

4. The other diskless machines, referred to client nodes (dual2~dual9), are equipped with a

1.44MB floppy disk drive and no graphics card.

5. Powered up the server node (dual1).

2.3 Set up Software

These instructions outline the procedure required to set-up Linux diskless boot using

RedHat 7.2, dhcpd & etherboot on a system using a RealTek RTL8139 Fast Ethernet Network

Interface Cards (NICs). The diskless workstation will be able to boot from a server node and

mount remote file systems. Adapting to other NIC's will not be very difficult to do, and it’s

almost the same.

1. OS installation: RedHat Linux 7.2 was installed on the Server node by connecting all the

31

peripherals such as monitor, mouse and keyboard. Most of the hardware was automatically

detected, so main focus was on partitioning the drive and choosing the relevant packages to

be installed. It is very important to choose partition size which is correct for the need because

it might be very difficult to change this at a later stage when the cluster will be in the

functional mode. Following is the list of partitions:

• The / partition is about 5GB. This / partition contains /bin, /boot, /dev, /lib, /root,

/sbin, /var and especially the /tftproot which contains boot images and copies of a

live file system for each client node.

• The /usr partition is about 15GB. This /usr partition were created by keeping in mind

that most additional rpm’s will install in /usr.

• The swap partition: Swapping is really bad for the performance of the system.

Unfortunately there might be a time when the machine is computing a very large job and

just don’t have enough memory. Since the machines have 256MB RAM, it was realized

that a 256MB of swap partition was a good idea.

• The /home partition: Rest part of the disk. This partition was used as common home area

for users on individual client nodes through NFS.

• Network Configuration: During OS installation IP address and node name were assigned.

Following are the server node name of Diskless Beowulf Cluster dual1 (192.168.1.1).

• For the configuration, the following files are modified: /etc/sysconfig/network and

/etc/sysconfig/network-scripts/ifcfg-eth0. Here are these two files
/etc/sysconfig/network

NETWORKING=yes

HOSTNAME=dual1

NISDOMAIN=dual

/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

ONBOOT=yes

BOOTPROTO=static

IPADDR=192.168.1.1

NETMASK=255.255.255.0

• /etc/hosts.equiv: In order to allow remote shells (rsh) from any node to any other in

the cluster, for all users, we should relax the security, and list all hosts in

32

/etc/hosts.equiv. Here we list dual1 ~ dual8 in individual lines

2. Run ntsysv command to enable minimum services, because we will make a copy of a live

file system as same as server node for diskless client nodes in order to avoid unnecessary

services for client nodes to start in boot time. The follows are the services that we choose:
[*]anacron

[*]atd

[*]crond

[*]keytable

[*]network

[*]portmap

[*]rlogin

[*]rsh

[*]sshd

[*]syslog

[*]xinetd

[*]netfs

3. Make several copies of a live file system of server node into /tftpboot/ directory. First of
all, we create /tftpboot/dual2, /tftpboot/dual3, …, and /tftpboot/dual9
directories, respectively, then perform the following steps for individual directory:
cd /

umask 022

mkdir -p /tftpboot/dual2/bin

mkdir -p /tftpboot/dual2/mnt

mkdir -p /tftpboot/dual2/proc

mkdir -p /tftpboot/dual2/tmp

mkdir -p /tftpboot/dual2/usr

chmod 1777 /tftpboot/dual2/tmp

cp -a bin lib sbin dev etc root var /tftpboot/dual2

Repeat the similar steps for /tfptboot/dual3, /tftpboot/dual4, etc. These

commands make copies of the file system files that will be used by the client. When

proceeding, be sure you are working on the COPIES not the originals. It is very easy to

make such mistake if not careful.

4. Modified the following configuration file for each node in /tftpboot/dual[2-9]/etc/

/etc/sysconfig/network and /etc/sysconfig/network-scripts/ifcfg-eth0,

especially the file /etc/fstab
dual1:/tftpboot/dual2/ nfs defaults 0 0

dual1:/usr /usr nfs defaults 0 0

33

dual1:/home /home nfs defaults 0 0

none /dev/pts devpts gid=5,mode=620 0 0

none /proc proc defaults 0 0

none /dev/shm tmpfs defaults 0 0

At firth line, dual1:/tftpboot/daul2/ may be dual1:/tftpboot/daul3, …,

dual1:/tftpboot/dual9 regard to which directory you are in.

5. Install TFTP daemon rpm package: After we have installed TFTP daemon rpm packages, be

sure the associated file /etc/xinetd.d/tftp is as follows
service tftp

{

disable = no

socket_type = dgram

protocol = udp

wait = yes

user = root

server = /usr/sbin/in.tftpd

server_args = -s /tftpboot

}

6. Install DHCP daemon rpm package (version 3), and modified associated configuration file as

follows. Note: For DHCP daemon to start correctly, you should enable the kernel option

(CONFIG_NETLINK_DEV).
Configuration the file for ISC dhcpd v3.0

not authoritative;

ddns-update-style none; # required for ISC v3.0

shared-network DISKLESS-BEOWULF {

subnet 192.168.1.0 netmask 255.255.255.0 {

}

}

group {

default-lease-time 21600;

max-lease-time 21600;

use-host-decl-names on;

option domain-name "hpc.csie.thu.edu.tw";

option subnet-mask 255.255.255.0;

option broadcast-address 192.168.1.255;

34

host dual1 {

hardware ethernet 00:90:cc:0b:79:54;

fixed-address 192.168.1.1;

if substring (option vendor-class-identifier, 0, 9) = "PXEClient" {

 filename "/vmlinuz.pxe";

 }else if substring (option vendor-class-identifier, 0, 9) = "Etherboot" {

 filename "/vmlinuz.nbi";

 }

}

host dual2 {

hardware ethernet 00:90:cc:0b:79:55

fixed-address 192.168.1.2;

if substring (option vendor-class-identifier, 0, 9) = "PXEClient" {

 filename "/vmlinuz.pxe";

 }else if substring (option vendor-class-identifier, 0, 9) = "Etherboot" {

 filename "/vmlinuz.nbi";

 }
}

} # group

The job of DHCP daemon is to provide boot from Ethernet for diskless client nodes. Where

hardware Ethernet is one of the MAC addresses of NICs among diskless client nodes .It is

unique to each NIC and important to diskless boot, because each node at boot time is

assigned a specific IP address by judging from the MAC address, then preceding the

subsequent process.

7. Network File System configuration: We have used fully local OS install configuration for the

server node of diskless Beowulf cluster. So far, all the client nodes are sill useless lumps of

metal without operating systems, all we have to do is set up NFS for providing remote boot

and root file system mount. Following were the steps used to configure NFS:

• We selected dual1 as server node and exported the /home, /usr, and /tftproot/dual*

directory which contains the live file systems and boot images by modifying the

/etc/exports of server node as :

/tftpboot/dual2 dual2(rw,no_root_squash)
/tftpboot/dual3 dual3(rw,no_root_squash)
/tftpboot/dual4 dual4(rw,no_root_squash)
/tftpboot/dual5 dual5(rw,no_root_squash)

35

/tftpboot/dual6 dual6(rw,no_root_squash)
/tftpboot/dual7 dual7(rw,no_root_squash)
/tftpboot/dual8 dual8(rw,no_root_squash)
/tftpboot/dual9 dual9(rw,no_root_squash)
/usr dual2(ro,no_root_squash) dual3(ro,no_root_squash)

 dual4(ro,no_root_squash) dual5(ro,no_root_squash)
 dual6(ro,no_root_squash) dual7(ro,no_root_squash)
 dual8(ro,no_root_squash) dual9(ro,no_root_squash)

/home dual2(rw,no_root_squash) dual3(rw,no_root_squash)
 dual4(rw,no_root_squash) dual5(rw,no_root_squash)
 dual6(rw,no_root_squash) dual7(rw,no_root_squash)
 dual8(rw,no_root_squash) dual9(rw,no_root_squash)

Make sure your NFS daemon of server node is enabled at boot time

8. Network Information System configuration: The Network Information Service (NIS) is an

administrative database that provides central control and automatic dissemination of

important administrative files. NIS converts several standard UNIX files into databases that

can be queried over the network. The databases are called NIS maps. Following are the main

steps for configuring NIS:

• Configuration of NIS master server: We selected NIS domain name “dual” by issuing the

command authconfig and the options that we choose are as follows
[*] Use NIS

Domain: dual

• Then we initiated the yp services as
#/etc/init.d/ypserv start

#cd /var/yp

#make

Make sure your NFS daemon of server node is enabled at boot time

9. Make a Linux bootable kernel for each client node: When make a new kernel with make

config, please be sure to enable the following options
IP: kernel level autoconfiguration (CONFIG_IP_PNP) [N/y/?] y

IP: DHCP support (CONFIG_IP_PNP_DHCP) [N/y/?] (NEW) y

IP: BOOTP support (CONFIG_IP_PNP_BOOTP) [N/y/?] (NEW) y

IP: RARP support (CONFIG_IP_PNP_RARP) [N/y/?] (NEW) y

NFS file system support (CONFIG_NFS_FS) [Y/m/n/?] y

Provide NFSv3 client support (CONFIG_NFS_V3) [Y/n/?] y

(The server node should enable above options also)
Root file system on NFS (CONFIG_ROOT_NFS) [Y/n/?] y

(The server node should not enable this option)

36

• The last line above is quite important, because the diskless client nodes will mount remote

file system as root file system through NFS export points. Also, we should make the kernel

of clients as simple as possible. That’s to say, no modules option is required.

• After compilation, we have to tag a kernel (usually is bzImage) for etherboot. First of all,

install the tool mknbi through RPM, and type the following command as root user
mknbi-linux --ipaddrs=rom \

/usr/src/linux/arch/i386/boot/bzImage > /tftpboot/vmlinuz.nbi

10. Make a ether bootstrap floppy disk or PXE boot image for each diskless client nodes:

• Marty Connor has set up form (http://rom-o-matic.net/) for creating a ROM image on the

fly and returning it as the output file of image. If all you want is just a ROM image, this

could save you time building the distribution. When you get an output image such as

eb-5.0.4-rtl8139.lzdsk, type the following command for each floppy disk
cat eb-5.0.4-rtl8139.lzdsk > /dev/fd0

• And insert the floppy disks to each diskless client nodes. If you want to use PXE boot (your

NICs must support) without using any floppy disk for each client, please create an output

image with PXE support (suffix with .lzpxe). And copy the image as

/tftpboot/vmlinuz.pxe, and then enable the NIC’s PXE boot of each client.

11. BIOS configuration: For booting machines without monitor, keyword and mouse, BIOS was

configured on all the machines. We connected the monitor, mouse and keyboard to the nodes

and configured the BIOS for no halt in the absence of keyboard, mouse and monitor.

12. Message passing libraries installation: Installation was automatic. During the selection of

packages, we selected clustering tools and it installed in /usr/bin/mpicc and

/usr/bin/mpif77. PVM installation: Parallel Virtual Machine (PVM) installation was

automatic. During the selection of packages, we selected clustering tools and it installed in

/usr/share/pvm3.

13. Run ntsysv command for the server node to enable NFS server, NIS server, DHCP daemon

and TFTP service, and then reboot.

14. After the server node has booted, power up all the client nodes. You may see the following

similar boot message through a serial console (you must enable it at step 10) connected to a

dumb terminal.

Searching for server (DHCP)...
Me: 192.168.1.2, Server: 192.168.1.2, Gateway:
Loading 192.168.1.1:/tftpboot/vmlinuz.nbi (NBI)... done

37

mknbi-1.2-2/first32.c (GPL)
129792k total memory
Uncompressing Linux... Ok, booting the kernel
Linux version 2.4.18 (jgoerzen@fritz) (gcc version 2.95.2 20000220
(RedHat Linux)) #1 Thu Apr 5 15:18:02 EST 2002
BIOS-provided physical RAM map:
BIOS-e820: 00090000 @ 00000000 (usable)
BIOS-e820: 07dc0000 @ 00100000 (usable)
Detected 564845 kHz processor.

Finally, a Login prompt will occur, then telnet into each client nodes and run authconfig to

enable NIS and set up its NIS domain and NIS server. If you want to start up additional

services at boot time, you may run ntsysv command to enable what you want.

15. Test if everything is going to work fine, and enjoy your high performance computing

3. Performance Results

3.1 Matrix Multiplications

The biggest price we had to pay for the use of a PC cluster was the conversion of an

existing serial code to a parallel code based on the message-passing philosophy. The main

difficulty with the message-passing philosophy is that one needs to ensure that a control node (or

master node) is distributing the workload evenly between all the other nodes (the compute nodes).

Because all the nodes have to synchronize at each time step, each PC should finish its

calculations in about the same amount of time. If the load is uneven (or if the load balancing is

poor), the PCs are going to synchronize on the slowest node, leading to a worst-case scenario.

Another obstacle is the possibility of communication patterns that can deadlock. A typical

example is if PC A is waiting to receive information from PC B, while B is also waiting to

receive information from A.

The matrix operation derives a resultant matrix by multiplying two input matrices, a and b,

where matrix a is a matrix of N rows by P columns and matrix b is of P rows by M columns. The

resultant matrix c is of N rows by M columns. The serial realization of this operation is quite

straightforward as listed in the following:

for(k=0; k<M; k++)
 for(i=0; i<N; i++){
 c[i][k]=0.0;

38

 for(j=0; j<P; j++)
 c[i][k]+=a[i][j]*b[j][k];
 }
Its algorithm requires n3 multiplications and n3 additions, leading to a sequential time

complexity of O(n3). Let's consider what we need to change in order to use PVM. The first

activity is to partition the problem so each slave node can perform on its own assignment in

parallel. For matrix multiplication, the smallest sensible unit of work is the computation of one

element in the result matrix. It is possible to divide the work into even smaller chunks, but any

finer division would not be beneficial because of the number of processor is not enough to

process, i.e., n2 processors are needed.

The matrix multiplication algorithm is implemented in PVM using the master-slave

paradigm. The master task is named master_mm_pvm, and the slave task is named

slave_mm_pvm. The master reads in the input data, which includes the number of slaves to be

spawned, nTasks. After registering with PVM and receiving a taskid or tid, it spawns nTasks

instances of the slave program slave_mm_pvm and then distributes the input graph information

to each of them. As a result of the spawn function, the master obtains the tids from each of the

slaves. Since each slave needs to work on a distinct subset of the set of matrix elements, they

need to be assigned instance IDs in the range (0... nTask-1). The tids assigned to them by the

PVM library do not lie in this range, so the master needs to assign the instance IDs to the slave

nodes and send that information along with the input matrix. Each slave also need to know the

total number of slaves in the program, and this information is passed on to them by the master

process as an argument to the spawn function since, unlike the instance IDs, this number is the

same for all nTasks slaves.

The matrix multiplication was run with forking of different numbers of tasks to demonstrate

the speedup. The problem sizes were 256×256, 512×512, 1024×1024, and 2048×2048 in our

experiments. It is well known, the speedup can be defined as Ts/Tp, where Ts is the execution

time using serial program, and Tp is the execution time using multiprocessor. The execution

times and corresponding speedups by using sixteen processors with different problem sizes were

listed in Figure 3 and Figure 4, respectively. In, the corresponding speedup is increased for

different problem sizes by varying the number of slave programs.

39

������
������ ������ ����� ������

������
������
������

������
������

������
������

������
������

�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����

������
������3.

00
7

1.
70

3

1.
08

1

0.
90

9

0.
83

7

25
.2

58

14
.3

62

7.
92

6

4.
88

3

3.
81

221
2.

11
2

12
0.

15
9

62
.3

31

36
.5

76

23
.0

17

16
97

.9
7

10
05

.3
4

51
1.

67
1

28
9.

09
9

16
5.

92
6

0
200
400
600
800

1000
1200
1400
1600
1800

Serial
(495X1)

PVM
(495X2)

PVM
(495X4)

PVM
(495X8)

PVM
(495X16)

of processors

E
xe

cu
tio

n
tim

e
(s

ec
���

256X256���
512X512���
1024X1024���
2048X2048

Figure 3: The execution time of MM using processor form 1 to 16.

��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

1.
77 2.

78 3.
31 3.
59

1.
76

3.
19

5.
17

6.
63

1.
77

3.
40

5.
80

9.
22

1.
69

3.
32

5.
87

10
.2

3

0
1
2
3
4
5
6
7
8
9

10
11

PVM (495X2) PVM (495X4) PVM (495X8) PVM (495X16)

of processors

S
pe

ed
up

����
256X256����
512X512����
1024X1024����
2048X2048

Figure 4: The speedup of MM

3.2 NAS parallel benchmark

The NAS Parallel Benchmark (NPB) is a set of 8 programs designed to help evaluate the

performance of parallel supercomputers. The benchmarks, which are derived from computational

fluid dynamics (CFD) applications, consist of five kernels and three pseudo-applications. NPB

2.3 is MPI-based source-code implementations written and distributed by NAS. They are

intended to run with little or no tuning, and approximate the performance a typical user can

http://www.nas.nasa.gov/Software/NPB/
http://www.nas.nasa.gov/Software/NPB/

40

expect to obtain for a portable parallel program. The LU benchmark is based on the NX

reference implementation from 1991. This code requires a power-of-two number of processors.

A 2-D partitioning of the grid onto processors occurs by halving the grid repeatedly in the first

two dimensions, alternately x and then y, until all power-of-two processors are assigned,

resulting in vertical pencil-like grid partitions on the individual processors. This ordering of

point based operations constituting the SSOR procedure proceeds on diagonals which

progressively sweep from one corner on a given z plane to the opposite corner of the same z

plane, thereupon proceeding to the next z plane. Communication of partition boundary data

occurs after completion of computation on all diagonals that contact an adjacent partition. This

constitutes a diagonal pipelining method and is called a “wavefront” method. It results in

relatedly large number of small communications of 5 words each.

A NAS benchmark that we chose to present here is LU. For the LU benchmark, the sizes

were class A and B. The execution time of LU was shown in Figure 5. The performance numbers

for 16 processors as reported in Figure 5 by the LU benchmark were 715.06 MFLOPS and

778.62 MFLOPS for class A and class B, respectively. As a measure of scalability, we selected

parallel speedup, as classically calculated. The serial time was obtained by running the

benchmarks on one processor. The speedup of LU benchmark is reported in Figure 5.

Figure 5: (a) Execution time of LU. (b) Speedup of LU using 16 processors. (c) Total

MFlops/s obtained using 16 processors.

3.3 PVMPOV for parallel rendering

Rendering is a technique for generating a graphical image from a mathematical model of a

two or three-dimensional object or scene. A common method of rendering is ray tracing. Ray

tracing is a technique used in computer graphics to create realistic images by calculating the

41

paths taken by rays of light entering the observer’s eye at different angles. Ray tracing is an ideal

application for parallel processing since there are many pixels, each of whose values are

independent and can be calculated in parallel. The Persistence of Vision Ray Tracer (POV-Ray)

is an all-round 3-dimensional ray tracing software package [5]. It takes input information and

simulates the way light interacts with the objects defined to create 3D pictures and animations. In

addition to the ray tracing process, newer versions of POV can also use a variant of the process

known as radiosity (sophisticated lighting) to add greater realism to scenes, particularly those

that use diffuse light POVRay can simulate many atmospheric and volumetric effects (such as

smoke and haze).

Given a number of computers and a demanding POVRay scene to render, there are a

number of techniques to distribute the rendering among the available resources. If one is

rendering an animation then obviously each computer can render a subset of the total number of

frames. The frames can be sent to each computer in contiguous chunks or in an interleaved order,

in either case a preview (every Nth frame) of the animation can generally be viewed as the

frames are being computed. POVRay is a multi-platform, freeware ray tracer. Many people have

modified its source code to produce special “unofficial” versions. One of these unofficial

versions is PVMPOV, which enables POVRay to run on a Linux cluster.

PVMPOV has the ability to distribute a rendering across multiple heterogeneous systems.

Parallel execution is only active if the user gives the “+N” option to PVMPOV. Otherwise,

PVMPOV behaves the same as regular POV-Ray and runs a single task only on the local

machine. Using the PVM code, there is one master and many slave tasks. The master has the

responsibility of dividing the image up into small blocks, which are assigned to the slaves. When

the slaves have finished rendering the blocks, they are sent back to the master, which combines

them to form the final image. The master does not render anything by itself, although there is

usually a slave running on the same machine as the master, since the master doesn't use very

much CPU power.

If one or more slaves fail, it is usually possible for PVMPOV to complete the rendering.
PVMPOV starts the slaves at a reduced priority by default, to avoid annoying the users on the
other machines. The slave tasks will also automatically time out if the master fails, to avoid
having lots of lingering slave tasks if you kill the master. PVMPOV can also work on a single
machine, like the regular POV-Ray, if so desired. The code is designed to keep the available
slaves busy, regardless of system loading and network bandwidth. We have run PVMPOV on

42

our 16-Celeron and 16-PIII processors testbed and have had amazing results, respectively. With
the cluster configured, runs the following commands to begin the ray tracing and generates the
image files as shown in Figure 6.
$pvmpov +iskyvase.pov +w640 +h480 +nt16 -L/home/ct/pvmpov3_1g_2/povray31/include

$pvmpov +ifish13.pov +w640 +h480 +nt16 -L/home/ct/pvmpov3_1g_2/povray31/include

$pvmpov +ipawns.pov +w640 +h480 +nt16 -L/home/ct/pvmpov3_1g_2/povray31/include

$pvmpov +iEstudio.pov +w640 +h480 +nt16 -L/home/ct/pvmpov3_1g_2/povray31/include

Figure 6: Four diagrams were generated by PVMPOV.

This is the benchmark option command-line with the exception of the +nw and +nh

switches, which are specific to PVMPOV and define the size of image each of the slaves, will be

working on. The +nt switch is specific to the number of tasks will be running. For example,

+nt16 will start 16 tasks, one for each processor. The messages on the screen should show that

slaves were successfully started. When completed, PVMPOV will display the slave statistics as

well as the total render time. In case of Skyvase model, by using single Celeron processor mode

of a dual processor machine for processing 1600X1280 image, the render time was 256 seconds.

43

Using out Celeron-based SMP cluster (16 processors) further reduced the time to 26 seconds.

The execution times for the different POVray model (Skyvase, Fish13, Pawns, and Estudio) on

Celeron SMPs and P-III SMP clusters were shown in Figure 7, respectively. The corresponding

speedups of different problem size by varying the number of task (option: +nt) was shown in

Figure 8. The highest speedups were obtained about 15.22 (1600X1280) for Pawns model by

using our Celeron SMPs cluster with 16 processors.

���
��� ��� ���

���
��� ��� ���

���
���
��� ���� ���

���
��� ���� ���

���
��� ���� ���

���
���
��� ��� ���

���
���
���
��� ��� ���

����
���� ��� ���

���
���
���

���
��� ���

����
����
����

���
��� ���

����
����
����
����
����

���
��� ���

���
���
��� ��� ���

���
���
���
���

���
��� ���

���
���
���
���
���

���
���

����
����

���
���
���
���
���
���
���
���

���
���

����
����

���
���
���

���
��� ����

���
���
���
���
���
���

���
���

����
����

���
���
���
���
���
���
���

���
���

���
���

���
���
���
���
���
���
���
���
���
���
���

���
���

���
���

���
���
���
���
���

���
��� ���

256

40 26

318

48 32

548

70
36

200

29 20
0

100

200

300

400

500

600

C
el

er
on

49
5X

1

C
el

er
on

49
5X

8

C
el

er
on

49
5X

16

C
el

er
on

49
5X

1

C
el

er
on

49
5X

8

C
el

er
on

49
5X

16

C
el

er
on

49
5X

1

C
el

er
on

49
5X

8

C
el

er
on

49
5X

16

C
el

er
on

49
5X

1

C
el

er
on

49
5X

8

C
el

er
on

49
5X

16

Number of processors

Pr
oc

es
si

ng
 ti

m
e

����
����
����
����
��������
����

Figure 7: Execution times of PVMPOV diagram.

640X480

800X600
1024X768

1280X1024
1600X1280

640X480
800X600
1024X768
1280X1024
1600X1280���

���
���
���

����
����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����

���
���
���
���
���

����
����
����
����
����

���
���
���
���
���
���

����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���

����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����

6.40

9.85

6.63

9.94

7.83

15.22

6.90

10.00

0

2

4

6

8

10

12

14

16

Celeron
495X8

Celeron
495X16

Celeron
495X8

Celeron
495X16

Celeron
495X8

Celeron
495X16

Celeron
495X8

Celeron
495X16

Number of processors

Sp
ee

du
p

���
���
���
���
������
���

Figure 8: Speedups of PVMPOV diagrams

44

4 Conclusion and Future Work

In traditional scalable computing clusters, there is related high powered Intel or AMD based

PC’s associated with several gigabytes of hard disk space spread around. As far as a cluster

administrator is concerned, the installer may have to install an operating system and related

software for each cluster node. Every node (excluding the Server) is equipped without any hard

disk and is booted from the network. Since it has booted successfully, it works as same as a fully

equipped one. We will explain how to set up a diskless cluster for computing purpose. In this

paper, a SMP-based PC cluster (16 processors), with diskless slave nodes, is proposed and built.

In order to take advantage of a cluster system, we presented the basic programming techniques

by using Linux/PVM to implement a PVM-based matrix multiplication program. Also, a real

application PVMPOV by using parallel ray-tracing techniques was examined. The experimental

results show that the highest speedups are obtained for matrix multiplication and PVMPOV,

when the total number of processors is 16, by creating 16 tasks on SMPs cluster. The results of

this study will make theoretical and technical contributions to the design of a message passing

program on a Linux SMP clusters.

References

[1] Buyya, R. (1999) High Performance Cluster Computing: System and Architectures, Vol. 1,
Prentice Hall PTR, NJ.

[2] Buyya, R. (1999) High Performance Cluster Computing: System and Architectures, Vol. 2,
Prentice Hall PTR, NJ.

[3] http://www.lam-mpi.org, LAM/MPI Parallel Computing.

[4] http://www.haveland.com/povbench, POVBENCH – The Official Home Page.

[5] http://www.epm.ornl.gov/pvm/, PVM – Parallel Virtual Machine.

[6] Sterling, T.L., Salmon, J., Backer, D.J., and Savarese, D.F.(1999) How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters, 2nd Printing, MIT Press,
Cambridge, Massachusetts, USA.

[7] Wilkinson, B., and Allen, M. (1999) Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers, Prentice Hall PTR, NJ.

[8] Wolfe, M. (1996) High-Performance Compilers for Parallel Computing, Addison-Wesley
Publishing, NY.

http://www.lam-mpi.org/

45

[9] Yang, C.-T., Tseng, S.-S., Hsiao, M.-C., and Kao, S.-H. (1999) “A Portable parallelizing
compiler with loop partitioning,” Proc. of the NSC ROC(A) 23(6), pp. 751-765.

[10] Yang, C.-T., Tseng, S.-S., Fan, Y.-W., Tasi, T.-K., Hsieh, M.-H., and Wu, C.-T. (2001)
“Using Knowledge-based Systems for research on portable parallelizing compilers,”
Concurrency and Computation: Practice and Experience 13, pp. 181-208.

46

一套無磁碟從節點的個人電腦叢集之簡介

楊朝棟* 張耀中*

摘 要

最近，運用叢集式電腦系統搭配 Linux作業系統與 PVM或MPI訊息傳遞程式庫，來執行高
速計算(或平行計算)已經逐漸走到實際可行的階段。本論文陳述本實驗室所建構的一套以一台主
機與 8台對稱式多處理機系統(16顆處理器)的無磁碟從節點之個人電腦叢集，並簡介叢集式平行
系統架構、設定、軟體工具以及相關應用。

關鍵詞：個人電腦叢集、平行計算、對稱式多處理機系統、訊息傳遞程式庫。

* 高效能計算實驗室，東海大學資訊工程與科學系

